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Introduction

Let F/Q be a number field of degree r + 2s, where r and s are the
number of real embeddings F → R and conjugate pairs of complex
embeddings F → C respectively.

F is a subfield of F ⊗ R ∼= Rr × Cs and its ring of integers OF is a
discrete subring.

Let S be the collection of real embeddings along with a choice of
complex embedding from each conjugate pair, so that that a ∈ F is
identified with the tuple (σ(a))σ∈S in the isomorphism above, i.e. if
F = Q(α) and the minimal polynomial of α over Q is m(x), then

F ⊗ R =
Q[x]

(m(x))
⊗ R =

∏
σ

real

R[x]

(x− σ(α))

∏
{σ,σ̄}

complex

R[x]

(x2 − (σ(α) + σ̄(α))x+ σ(α)σ̄(α))
.

General question:

How well can z ∈ Rr × Cs be approximated by elements of F?
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A measure of approximation

We will measure the approximation of z = (zσ)σ by p/q ∈ F with

max
σ
{|σ(q)|}max

σ
{|σ(q)zσ − σ(p)|}.

[Why use this measure...?]

We say z is badly approximable if there exists C ′ > 0 such that

max
σ
{|σ(q)|}max

σ
{|σ(q)zσ − σ(p)|} ≥ C ′

for all p/q ∈ F .

[If z is badly approximable as defined above, then

max
σ
{|zσ − σ(p/q)|} ≥ C ′/max

σ
{|σ(q)|}2,

and the converse holds for (r, s) = (1, 0), (0, 1), (2, 0), (0, 2).]
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Some approximation properties

The measure of approximation introduced above has the following
properties.

Dirichlet-type

There exists C > 0 such that any z 6∈ F has infinitely many rational
approximations p/q with

max
σ
{|σ(q)|}max

σ
{|σ(q)zσ − σ(p)|} ≤ C.

Roth-type

For any algebraic z 6∈ F (each zσ algebraic) and any ε > 0, there
exists C ′ > 0 such that

max
σ
{|σ(q)|}1+ε max

σ
{|σ(q)zσ − σ(p)|} ≥ C ′

for any p/q ∈ F .

The set of badly approximable vectors has measure zero but full
Hausdorff dimension.



Some previous work

*M. Einsiedeler, A. Ghosh, and B. Lyttle: The set of badly approximable vectors
is “winning” (even when restricted to curves) in the setting above.
*D. Kleinbock and T. Ly: The set of badly approximable vectors is “H-absolute
winning” (even when restricted to curves and some fractals) in the setting above.
*T. Hattori: Proved Dirichlet-type theorems for real quadratic and complex
quartic fields - infinitely many solutions to

‖z− p/q‖1 ≤ C/
√
H(q),

and gave examples of badly approximable vectors.
*R. Quême: Proved Dirichlet-type theorems - infinitely many solutions to

‖q‖1′ · ‖qz− p‖1′ ≤ C, N(z− p/q) ≤ C/N(q)

where N(z) is the extension of the absolute value of the field norm.
*E. Burger: Diophantine approximation over S-integers and examples of badly
approximable linear systems using

hS(x,y)N
∏
v∈S
|Avx− y|Mv , x ∈ ONF , ,y ∈ O

M
F , Av ∈MatM×N (Fv).

*W. Schmidt: Dirichlet-type theorem (for
∏
σ σ(K) ⊆ Rr × Cs) and the Subspace

theorem for number fields (from which the above Roth-type theorem can be
deduced).

*S. G. Dani: Characterization of badly approximable systems of linear forms in

terms of bounded trajectories in SLn(Z)\SLn(R).



Geometry of SL2

Let G = SL2(F ⊗ R) ∼= SL2(R)r × SL2(C)s and let
K ∼= SO2(R)r × SU2(C)s be a maximal compact subgroup.

The symmetric space G/K ∼= (H2)r × (H3)s is a product of
hyperbolic 2- and 3-spaces (upper half-space model).

[SL2(R) acts transitively on H2 = {z = x+ iy ∈ C : y > 0} via
fractional linear transformations,(

a b
c d

)
· z =

az + b

cz + d

and the stabilizer of z = i is SO2(R). Similarly, SL2(C) acts
transitively on H3 = {ζ = z + tj ∈ H : t > 0} via fractional linear
transformations, (

a b
c d

)
· ζ = (aζ + b)(cζ + d)−1

and the stabilizer of ζ = j is SU2(C).]
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Geometry of SL2 (continued)

Γ = SL2(OF ) is a non-uniform lattice in G - a discrete subgroup such
that Γ\G is not compact but has finite volume.

We will be interested in the locally symmetric spaces Γ\G/K.

For example, we have the modular surface SL2(Z)\H2, Bianchi
orbifolds SL2(OF )\H3, and Hilbert modular surfaces SL2(OF )\(H2)2

for (r, s) = (1, 0), (0, 1), and (2, 0) respectively.



Dani correspondence

Dani correspondence

The vector z is badly approximable over F if and only if the trajectory

ωz(t) =

{
Γ ·
((

1 zσ
0 1

)(
et 0
0 e−t

))
σ∈S
·K : t ≥ 0

}
is bounded in Γ\G/K

This follows from Mahler’s compactness criterion (tailored here to our
current needs):

Mahler’s criterion

A subset Ω ⊆ SL2(F ⊗ R) is precompact modulo Γ if and only if the
OF -lattices spanned by the rows of elements of ω ∈ Ω have no
arbitrarily short vectors, i.e. there exists ε > 0 such that

inf{‖(p q)ω‖ : (0, 0) 6= (p, q) ∈ O2
F , ω ∈ Ω} ≥ ε.



Easy bounded trajectories

The rest of this talk will be concerned with getting ahold of some
obvious bounded trajectories ωz: those asymptotic to compact
subspaces of Γ\G/K.

The compact subspaces we pursue are those associated to the
orthogonal and unitary groups of anisotropic quadratic and Hermitian
forms.



Totally indefinite anisotropic binary quadratic forms

Let F be a number field and

Q(x, y) = Ax2+Bxy+Cy2 = (x y)

(
A B/2
B/2 C

)(
x

y

)
, A,B,C ∈ F,

an F -rational binary quadratic form.

Q is anisotropic if Q(p, q) = 0, p, q ∈ OF , only if (p, q) = (0, 0). This
condition is equivalent to −det(Q) not being a square in F .

Q is totally indefinite if det(Q) ∈ F is negative under every real
embedding.

Denote by Qσ the form obtained by applying σ to the coefficients of
Q:

Qσ =

(
σ(A) σ(B/2)
σ(B/2) σ(C)

)
.
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Zero set of totally indefinite Q

The product of projective spaces P 1(R)r × P 1(C)s sits naturally in
the boundary of (H2)r × (H3)s, and we identify
z = (zσ)σ∈S ∈ Rr × Cs with the tuple ([zσ : 1])σ.

Let
Z(Qσ) = {[p : q] ∈ P 1(R) or P 1(C) : Qσ(p, q) = 0}

be the zero set of Qσ and Z(Q) =
∏
σ Z(Qσ) be their product, a finite

set of cardinality 2r+s for totally indefinite Q.

Note that g−1 · Z(Q) = Z(Qg) for g =

((
aσ bσ
cσ dσ

))
σ

∈ G, where

the action on the left is the Möbius/isometric action

g · z = g · (zσ)σ =

(
aσzσ + bσ
cσzσ + dσ

)
σ

and the action on the right is change of variable

Qg = gtQg = (Qσ(aσx+ bσy, cσx+ dσy))σ.
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Compactness and orthogonal groups

Let

SO(Q,F ⊗R) = {g ∈ G : gtQg = Q}, SO(Q,OF ) = Γ∩SO(Q,F ⊗R),

be the orthogonal groups of Q over F ⊗ R and OF respectively.

The following is well-known (and can be proved via Mahler’s
criterion):

If Q is anisotropic, then SO(Q,OF )\SO(Q,F ⊗ R) ⊆ Γ\G and
Γ · SO(Q,F ⊗ R)g ·K ⊆ Γ\G/K are compact for any g ∈ G.

In particular, this implies:

If Q is totally indefinite and anisotropic, then
∏
σ Lσ mod Γ is a

compact totally geodesic subspace of Γ\G/K, where Lσ is the line in
H2 or H3 with endpoints Z(Qσ).



Totally indefinite anisotropic binary Hermitian forms (CM fields)

Let F/E be a CM field, (E totally real, F/E imaginary quadratic)
and

H(z, w) =Azz̄ +Bz̄w +Bzw̄ + Cww̄ = (z̄ w̄)

(
A B
B C

)(
z

w

)
,

A, C ∈ E,B ∈ F,

an F -rational binary Hermitian form. [The overline is “complex
conjugation”, the non-trivial automorphism of F/E.]

H is anisotropic if H(p, q) = 0, p, q ∈ OF , only if (p, q) = (0, 0). This
condition is equivalent to −det(H) not being a relative norm.

H is totally indefinite if det(H) ∈ E is negative under every real
embedding.

Denote by Hσ the form obtained by applying σ to the coefficients of
H:

Hσ =

(
σ(A) σ(B)

σ(B) σ(C)

)
.
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Zero set of totally indefinite H

The product of projective spaces P 1(C)s sits naturally in the
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[If A 6= 0, then
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Compactness and unitary groups

Let

SU(H,F⊗R) = {g ∈ G : ḡtHg = H}, SU(H,OF ) = Γ∩SU(H,F⊗R),

be the unitary groups of H over F ⊗ R and OF respectively.

The following is well known (and can be proved with Mahler’s
criterion):

If H is anisotropic, then SU(H,OF )\SU(H,F ⊗ R) ⊆ Γ\G and
Γ · SU(H,F ⊗ R)g ·K ⊆ Γ\G/K are compact for any g ∈ G.

In particular, this implies:

If H is totally indefinite and anisotropic, then
∏
σ Pσ mod Γ is a

compact totally geodesic subspace of Γ\G/K, where Pσ is the plane
in H3 with boundary Z(Hσ).



Examples of badly approximable vectors

Let Q be totally indefinite anisotropic F -rational binary quadratic
form and z ∈ Z(Q) ⊆ Rr × Cs. Then z is badly approximable.

Similarly, if F is a CM field and z ∈ Z(H) ⊆ Cs is a zero of a totally
indefinite anisotropic F -rational binary Hermitian form, then z is
badly approximable.

Example 1 : Q = x2 − (2−
√

2)y2 is anisotropic and totally indefinite
over Q(

√
2), so the four vectors(

±
√

2−
√

2,±
√

2 +
√

2

)
∈ R2

are badly approximable.

Example 2 : H = |z|2 − 3|w|2 is anisotropic and totally indefinite over
Q(
√

5,
√
−1), so every vector in the torus

{(
√

3 cos s+ i
√

3 sin s,
√

3 cos t+ i
√

3 sin t) : s, t ∈ [0, 2π)} ⊆ C2

is badly approximable.



Proof

If z ∈ Z(Q) (resp. Z(H)), then the trajectory ωz(t) is asymptotic to
the product of lines

∏
σ Lσ (resp. the product of planes

∏
σ Pσ).

Modulo Γ,
∏
σ Lσ (resp.

∏
σ Pσ) is compact.

Therefore ωz(t) mod Γ is bounded in Γ\G/K.



Alternative proof (i.e. maybe I’m wasting your time)

There is also an elementary proof à la Liouville that zeros of totally
indefinite anisotropic integral binary quadratic and Hermitian forms
are badly approximable. Suppose J is such a form and that
J(z, 1) = 0. If maxσ{|zσ − σ(p/q)|} ≤ 1, then by the mean value
theorem

|Jσ(σ(p/q), 1)| = |Jσ(zσ, 1)− Jσ(σ(p/q), 1)| ≤ cσ|zσ − σ(p/q)|

for some cσ > 0. Since J is integral and anisotropic,

max
σ
{|σ(q)2Jσ(σ(p/q), 1)|} ≥ c′

say for c′ = min{maxσ{|σ(a)|} : 0 6= a ∈ OF }. Hence for some σ0,

max
σ
{|σ(q)|}max

σ
{|σ(q)zσ − σ(p)|} ≥ cσ0/c

′.



Examples over Q, (r, s) = (1, 0)

Over Q, we recover the fact that quadratic
irrationals are badly approximable. This is
usually demonstrated using continued fractions,
but here we rely on the correspondence between
(equivalence classes of) indefinite (anisotropic,
integral) binary quadratic forms and closed
geodesics on the modular surface.

Left is the trajectory aimed at
3
√

2− 4 = [0; 4, 8]. The trajectory is bounded,
asymptotic to the closed geodesic associated to
the form x2 + 8xy − 2y2.



Examples over imaginary quadratic fields, (r, s) = (0, 1)

Orbit of z =
√

3e2πi/5 for a
continued fraction algorithm
over F = Q(

√
−1), indicating

the contstrained and badly
approximable behavior of ωz(t).

Over an imaginary quadratic
field F = Q(

√
−d), quadratic

irrationals are badly
approximable (corresponding to
closed geodesics in the Bianchi
orbifolds), but we also have
zeros of indefinite (anistropic,
integral) binary Hermitian
forms, associated to compact
totally geodesic surfaces. Proofs
can be given using (nearest
integer) continued fractions
when OF is Euclidean
(d = 1, 2, 3, 7, 11).



Non-quadratic algebraic examples over CM fields

We would like to note that the Z(H) contain many algebraic vectors,
which we can parameterize as follows.

Choose real algebraic numbers uσ ∈ [−2, 2], a totally positive
t ∈ E\NF

E (F ), and any s ∈ F . Then

z = (zσ)σ, zσ = σ(s) +
√
σ(t)

uσ ±
√
u2σ − 4

2
,

are the algebraic badly approximable vectors associated to Hermitian
forms.

Question

Are Z(Q), Z(H) the only badly approximable algebraic vectors?

This is not known even in the case (r, s) = (1, 0).



Thank you for your attention,

and thanks to the AMS and
everyone involved in the MRC!
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