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None of the following is original, in fact it’s mostly ripped from wikipedia (edited for ease
of exposition).

1 Sum of two squares

Let’s warm up with deciding which positive integers can be written as a sum of two squares.
The key to answering this question is noting its mulitiplicative nature. Specifically,

(a2 + b2)(x2 + y2) = (ax− by)2 + (ay + bx)2 = (ax+ by)2 + (ay − bx)2

which we may think of in terms of norms of complex numbers

|a+ bi|2|x+ yi|2 = |(a+ bi)(x+ yi)|2

or mulitiplicativity of the norm in the Gaussian integers, or as a composition of binary quadratic
forms. In any case, this (basically) reduces the problem to writing primes as a sum of two
squares. There is an obvious congruence obstruction, namely that

x2 + y2 ≡ 0, 1, 2(4),

i.e. a prime p ≡ 3(4) is never a sum of two squares. We obviously have 1 = 12 + 02 and
2 = 12 + 12 so we focus our attention on odd primes p ≡ 1(4). We will use the fact that the
Gaussian integers, Z[

√
−1], have unique factorization. It is a euclidean domain with respect

the usual absolute value on the complex numbers. To see this note that the condition

Given any a, b ∈ Z[i], b 6= 0, there are q, r ∈ Z[i] such that

a = bq + r, |r| < |b|,

is equivalent (dividing by b) to the condition

For any a/b ∈ Q(i) there is a q ∈ Z[i] such that

|a/b− q| < 1.

You can convince yourself of the latter by drawing circles of radius 1 around lattice points in
Z2. [Exercise: show that the covering radius around integers is ≤ 1 in Q(

√
d), d < 0 square

free, iff d = −1,−2,−3,−7,−11.] One other fact we need is that −1 is a square modulo p for
p ≡ 1(4) since

(−1)
p−1
2 ≡ 1(p)
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(if −1 weren’t a square, we’d have (−1)
p−1
2 ≡ −1(p), recalling (Z/(p))× is cyclic of order p−1).

Hence there is an m such that p|m2 + 1. Over the Gaussian integers, this gives

p|m2 + 1 = (m+ i)(m− i).

Now p divides neither of the factors on the right hand side so that p is not a Gaussian prime.
Hence p has a non-trivial factorization over the Gaussian integers, which must be of the form
p = (x+ yi)(x− yi) = x2 + y2 since |p|2 = p2 so that p = αβ with |α|2 = |β|2 = p. Hence p is a
sum of two squares.

To summarize, n is a sum of two squares iff for all q|n with q ≡ 3(4), q occurs with an even
exponent in the prime factorization of n. One direction is clear from the above, and to see that
the exponents of q|n, q ≡ 3(4), must be even, we have the following lemma.

Lemma 1. If q|a2 + b2 and q ≡ 3(4), then q|a and q|b (i.e. q2 divides n = a2 + b2).

Proof. If q doesn’t divide both a and b, say (a, q) = 1, let a′a ≡ 1(q). Then we have

−a2 ≡ b2(q), −1 = (a′b)2(q).

However, −1 is not a quadratic residue modulo q, a contradiction.

An example:

4680 = 23 · 32 · 5 · 13 = (12 + 12)3(32 + 02)(12 + 22)(22 + 32) = . . .

= 182 + 662 = 422 + 542.

The representation of a prime as a sum of two squares is unique (up to order and sign). More
generally we have (including sign and order)

r2(n) = 4(d1(n)− d3(n))

where di(n) is the number of divisors of n congruent to i modulo 4 (16 = 4(8−4) in the example
above).

2 Hurwitz quaternions

To prove that every positive integer can be express as a sum of four squares, we follow the proof
above but use properties of “unique” factorization in a non-commutative ring, the Hurwitz

quaternions (a maximal order the quaternion algebra
(
−1,−1

Q

)
).

Given a field F (char(F ) 6= 2) and a, b ∈ F×, there is a four-dimensional (unital, associative)

F -algebra A =
(
a,b
F

)
with basis 1, i, j, ij = k determined by

i2 = a, j2 = b, ij = −ji.

A is either isomorphic to M2(F ) or is a division algebra (skew fiield, non-commutative field),
according as ax2 + by2 = 1 has a solution (x, y) ∈ F 2. [This is the Clifford algebra for the
quadratic form ax2 + by2.]

The familiar real quaternions, or Hamiltonians H =
(
−1,−1

R

)
is a division algebra as follows.

We introduce the order two anti-isomorphism (“conjugation”)

x = x0 + x1i+ x2j + x3k, x̄ = x0 − x1i− x2j − x3k
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and note that N(x) := xx̄ = x2
0 + x2

1 + x2
2 + x2

3 ∈ R with xx̄ ≥ 0 with equality if and only if
x = 0. Hence x−1 = x̄

xx̄ for x 6= 0. The multiplicativity of the norm once again allows us to
reduce the problem of representing an integer as a sum of four squares to that of representing
a prime as a sum of four squares

N(x)N(y) =(x2
0 + x2

1 + x2
2 + x2

3)(y2
0 + y2

1 + y2
2 + y2

3)

N(xy) = (x0y0 − x1y1 − x2y2 − x3y3)2 + (x0y1 + x1y0 + x2y3 − x3y2)2

+ (x0y2 − x1y3 + x2y0 + x3y1)2 + (x0y3 + x1y2 − x2y1 + x3y0)2.

You may also recognize the “real” and “imaginary” parts of

(x1i+ x2j + x3k)(y1i+ y2j + y3k)

= −(x1y1 + x2y2 + x3y3) + (x2y3 − x3y2)i+ (x3y1 − x1y3)j + (x1y2 − x2y1)k

as the dot and cross products of (x1, x2, x3) and (y1, y2, y3). The Hamiltonians have a repre-
sentation as a real subalgebra of M2(C)

H ∼=
{(

a b
−b̄ ā

)
, a, b ∈ C

}
(quaternion conjugation is the adjoint/conjugate transpose) and the group of norm one elements
is topologically S3 (det(x) = aā+bb̄ = 1 describes the unit sphere), isomorphic to SU2, a double
cover of SO3(R) ∼= P 3(R).

As we used Z[i] ⊆ Q(i) above, we want to take advantage of a subring of the division

algebra A :=
(
−1,−1

Q

)
which has similar properties. An obvious candidate for “integers” in the

quaternions is the ring {x0 + x1i+ x2j + x3k : xi ∈ Z}, but this isn’t large enough (just barely:
the only points of R4 not covered by open balls of radius 1 around Z4 are (Z + 1/2)4 since
the length of the diagonal of the unit cube in four dimensions is

√
12 + 12 + 12 + 12 = 2). So

instead we’ll throw in those middle points and consider the Hurwitz quaternions

O := {x0 + x1i+ x2j + x3k : {xi} ⊆ Z or {xi} ⊆ Z + 1/2}

(all xi integers or half-integers). One can verify that this is a ring, and that all norms are
integers

N((x0 + 1/2) + (x1 + 1/2)i+ (x2 + 1/2)j + (x3 + 1/2)k) =

4∑
i=1

(xi + 1/2)2 = 1 +
4∑

i=1

xi(xi + 1).

For later use, note that O× = {x ∈ O : N(x) = 1}. Some magical junk about O:

• The 24 vectors of norm 1, O×, are ±1,±i,±j,±k, and (±1
2 ±

i
2 ±

j
2 ±

k
2 ) with all combi-

nations of ±. O× is the vertex set of the 24-cell, a self-dual convex regular polytope in
four dimensions which tessellates R4.

• O is the F4 root lattice, the root system being the the union of the vertices of the 24-cell
O× and its dual, all permutations of coordinates and choice of signs for (±1,±1, 0, 0).

We need some euclidean property and lemma similar to
(
−1
p

)
= 1 for p ≡ 1(4) to imitate our

earlier proof.
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Lemma 2. For any α ∈ A there is an x ∈ O such that N(α− x) < 1 (all rational quaternions
are within unit distance of a Hurwitz quaternion).

Proof. Choose x0 so that |α0 − x0| < 1/4 (which decides whether or not the xi will be all
integers or all half-integers), then follow through choosing |xi − αi| < 1/2 for i = 1, 2, 3. Then
N(α− x) < 1/16 + 1/4 + 1/4 + 1/4 = 13/16 < 1 as desired.

This lemma is enough to show that all one-sided ideals of O are principal. Given a left ideal
I, let x ∈ I \{0} have minimal norm. If y ∈ I then there is a q ∈ O such that N(yx−1− q) < 1,
i.e. N(y − qx) < N(x) impossible unless y = qx.

Lemma 3. For any odd prime p, there are a, b ∈ Z such that p|1 + l2 +m2 (i.e. −1 is a sum
of two squares modulo p).

Proof. There are (p+ 1)/2 distinct residues in X =

{
02, 12, . . . ,

(
p−1

2

)2
}

(over a field x2 = y2

iff x = ±y), and therefore (p + 1)/2 distinct residues in Y = {−(1 + x) : x ∈ X}. Hence
X ∩ Y 6= ∅, a2 ≡ −(1 + b2)(p) for some a, b, and p|1 + a2 + b2 as desired.

3 Sum of four squares

Here we go!

Theorem 1. Every positive integer is a sum of four squares.

Proof. First note that 1 and 2 are both sums of four squares, so that we are left to show that
every odd prime is a sum of four squares (via multiplicativity of the norm). For an odd prime
p we have integers a, b such that

p|1 + a2 + b2 = (1 + ai+ bj)(1− ai− bj)

and p > 2 divides neither of the factors on the right. Consider the (principal!) right ideal
pO + (1 + ai+ bj)O = xO. This ideal contains p so we have a factorization p = xy in O. This
factorization is non-trivial. If y were a unit then 1 + ai+ bj ∈ xO = pO, but p - 1 + ai+ bj. If
x were a unit, then O = xO and

1− ai− bj ∈ (1− ai− bj)(pO + (1 + ai+ bj)O) ⊆ pO.

This is impossible as p - 1− ai− bj.
So p factors non-trivially in O, p = xy, with p = N(x) = N(y), and p = x2

0 + x2
1 + x2

2 + x2
3.

If all the xi are integers, we’ve finished. If the xi are all half-integers, let ε = 1
2(±1± i± j ± k)

(a unit) such that z = x + ε has even integer coefficients. Then p = xεε̄x̄ = (z̄ε − 1)(ε̄z − 1),
and p = N(ε̄z − 1) where ε̄z − 1 has integer coefficients.
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