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Let G = {(x1,22) € P}(R)x P}(R)\diag.} interpreted as oriented geodesics of the hyperbolic
plane. If m : PY(R) — P'(R) is defined by m(x) = 2£b where M = ( CCL Z > is invertible,

cx+d

then m : G — G, m(z,y) = (m(z), m(y)), preserves the measure dn(z,y) = (;if‘;z’)’Q on G:
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To discuss continued fractions, let a(z) = 1/z,b(z) = x — 1 with associated matrices

0 1 1 -1
(1) m=(a )

and define ¢ : (0,00) — (0,00) by

Consider the set of geodesics
X = {(‘Tay) € (_007 _1) X (07 1) U (_0070) X (1700))}
and define T': X — X by

_f (b(z),b(y) =(x—-1,y—1) ye(l,00)
T(“’)‘{ (a@).a(y) = (1. 1/y)  ye(0.1) °

(see figure below). Then moT = tom and T is bijective a.e. (T is an invertible extension
of t). Hence T preserves the measure 1 as detailed above. The first return Ty of T to Xy =
(—o0,—1) x (0,1) is also invertible, given by

o= (- 12

and is an invertible extension of the Gauss map (first return of ¢ to (0, 1)), to(x) = {1/z}.



The push-forward of 1 (by projection onto the second coordinate) is

-1  dx d
dy [, @y = ﬁ ye(0,1)

du(y) =
wlv) { dy fgoo (xigfgy = % y € (1,00)

recovering the (fp-invariant) Gauss measure p on (0,1).
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