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The idea of topological K-theory is that spaces can be distinguished by the vector bundles
they support. Below we present the basic ideas and definitions (vector bundles, classifying
spaces) and state one major theorem (Bott periodicity), finally presenting K-theory in the
context of a generalized cohomology theory via its representability by an Ω-prespectrum. We
then indicate an application (the only spheres that are H-spaces are Sk for k = 0, 1, 3, 7) and
other directions that K-theory can take (algebraic K-theory and the K-theory of C∗ algebras).

1 Vector Bundles and K(X)

Definition 1. A vector bundle (of dimension n over k = R or C) with base space B and

total space E is a map E
p−→ B with the following properties.

• E locally a product: there is a an open cover ∪iUi of B and homeomorphisms

φ : p−1(Ui)
∼=−→ Ui × kn

such that (p ◦ φ−1i )(u, v) = u.

• Transitions are linear: the homeomorphisms

φj ◦ φ−1i |(Ui∩Uj)×kn : (Ui ∩ Uj)× kn → (Ui ∩ Uj)× kn.

are linear isomorphisms in each fiber {b} × kn.

One can define vector bundles over X via clutching functions as follows. Let X = ∪iUi
be an open cover and Ei = Ui × Cn a trivial bundle over each element of the cover. Suppose
we have gij : Ui ∩Uj → GLn(C) satisfying the cocycle condition gjk ◦ gij = gik on Ui ∩Uj ∩Uk.
Then

∐
iEi/ ∼ is a vector bundle over X (projecting onto the first coordinate), where

(x, v) ∼ (x, gijv), x ∈ Ui ∩ Uj .

Some examples:

• the trivial bundles E = B × kn,

• tangent bundles of smooth manifolds and normal bundles of immersed manifolds,

• the canonical bundle over P 1(C) (lines through the origin in C2),

H = {(L, v) : L ∈ P 1(C), v ∈ L}.
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• the Möbius bundle [0, 1]×R/ ∼, where we identify (0, x) and (1,−x) (this is the canonical
bundle over S1 ∼= P 1(R)).

The canonical bundle over P 1(C) will be important later.
There are additive and multiplicative operations on vector bundles over a given base. Given

two k-vector bundles over the same base, E
p−→ B and E′

p′−→ B (say of dimensions n and m
respectively), we have{

E ⊕ E′ p⊕p
′

−−−→ B
(p⊕ p′)−1(b) = p−1(b)⊕ p′−1(b)

,

{
E ⊗ E′ p⊗p

′
−−−→ B

(p⊗ p′)−1(b) = p−1(b)⊗ p′−1(b)
,

the fibrewise sum and product of the vector bundles (of dimensions n+m and nm respectively).
If B = ∪iUi is such that E, E′ are trivial over Ui and {gij}, {g′ij} are their respective clutching
functions, then the clutching functions for E ⊕ E′ and E ⊗ E′ are

{gij ⊕ g′ij ∈ GLn+m(k)}, {gij ⊗ g′ij ∈ GLnm(k)}.

These operation give the isomorphism classes of k-vector bundles over B, Vectk(B), the struc-
ture of a commutative semi-ring. We can formally extend to virtual bundles, similar to the
construction of Z from N.

Proposition 1. Given a semi-ring A there is a ring R and homomorphism A → R such that
for any homorphism A→ R′ from A to a ring R′, there is a unique homorphism R→ R′ such
that

A //

  

R′

R

OO

commutes. Furthermore, this constructin is functorial in A. [The abelian group G(A) obtained
from an abelian semi-group A in the constuction below is called the Grothendieck group of
A.]

Proof. Let R be the set A × A modulo the equivalence relation (a, b) ∼ (a′, b′) if there exists
c ∈ A such that

a+ b′ + c = a′ + b+ c.

Addition and multiplication are defined by

(a, b) + (c, d) = (a+ b, c+ d), (a, b) · (c, d) = (ac+ bd, ad+ bc).

Another construction is to take the free abelian group on A and quotient by the appropriate
relations

{(a⊕ a′)− (a+ a′) : a, a′ ∈ A}.

This ring of virtual bundles is our object of study.

Definition 2. The ring of isomophism classes of complex virtual bundles over X is the K-
theory of X, denoted by K(X). The association X 7→ K(X) is a contravariant functor from
topological spaces to rings. [There is also the real K-theory of X, denoted by KO(X).]
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K-theory is functorial in X as follows. Given X
f−→ Y and a vector bundle E

p−→ Y , we have
the pullback f∗E

q−→ X,

f∗E = X ×Y E = {(x, e) ∈ X × E : p(e) = f(x)}, q(x, e) = x,

a vector bundle over X with fiber q−1(x) = p−1(f(x)). That the conditions for a vector bundle

are satisfied can be checked by pulling back a local trivialization of E
p−→ Y . It is straightforward

to verify that this gives a ring homomorphism K(Y )
f∗−→ K(X).

In fact, K factors through the homotopy category.

Proposition 2 ([VBKT] 1.6, [AGP] 8.4.4.). If f0, f1 : A → B are homotopic through H :
A × I → B and p : E → B is a vector bundle, then f∗0 (E) ∼= f∗1 (E) (assuming A is compact
Hausdorff).

Proof. Considering the pullback q : H∗(E)→ A× I, we want to show that

f∗0 (E) = q−1(A× {0}) ∼= q−1(A× {1}) = f∗1 (E).

• First we note that any bundle E
p−→ X × I is trivial if the restrictions over X × [0, 1/2],

X × [1/2, 1] are trivial. If these restrictions are E0, E1 with local trivializations

E0
h0−→ X × [0, 1/2]× Cn, E1

h1−→ X × [1/2, 1]× Cn

then we have the isomorphism h−11 ◦ h0 : X × {1/2} × Cn → X × {1/2} × Cn given by
(x, 1/2, v) 7→ (x, 1/2, g(v)) for some linear g, and the map

X × I × Cn → B, (x, t, v) 7→
{

h0(x, t, v) 0 ≤ t ≤ 1/2
h1(x, t, g(v)) 1/2 ≤ t ≤ 1

is a trivialization of E.

• Secondly, we note that any vector bundle E
p−→ B × I has a local trivialization of the

form Ui × I for an open cover Ui of B. Given x ∈ X, there is a collection {Ux,i}ni=1 of
neighborhoods of x and a partition 0 = t0 < · · · < tn = 1 such that the restriction of E
over each of Ux,i× [ti−1, ti] is trivial (using compactness of I). By the previous point, the
restriction of E over Ux × I is trivial where Ux = ∩ni=1Ux,i.

Now take any vector bundle E
p−→ X × I, and let X = ∪ni=1Ui be such that E is trivial over Ui

with a partition of unity φi subordinate to the Ui. Let ψi =
∑i

j=1 φj , Xi ⊆ X × I the graph of

ψi (homeomorphic to X), and Ei
pi−→ Xi the restriction of E over Xi. Because E is trivial over

Ui × I, the homeomorphisms hi : Xi → Xi−1 lift to homeomorphisms h̃i : Ei → Ei−1 that are
the identity outside of p−1(Ui × I)

h̃i(x, ψi(x), v) = (x, ψi−1(x), v), (x, ψi(x), v) ∈ Ui × I × Cn ∼= p−1(Ui × I).

The composition h̃1 ◦ · · · ◦ h̃n is a homeomorphism E|X×{0} ∼= E|X×{1}.

Some examples:

• K(pt.) = Z (a vector bundle over a point is a vector space, determined up to isomorphism
by its dimension).
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• We’ll see that K(S2) = Z[H]/(H − 1)2 generated by the canonical bundle H = {(L, x) :
L ∈ P 1(C), x ∈ L}, viewing S2 as the collection of complex lines L through the origin in
C2. We can at least see that the relation H ⊗H ⊕ 1 = H ⊕H holds using the clutching
functions

f(z) =

(
z2 0
0 1

)
, g(z) =

(
z 0
0 z

)
on the intersection of the affine open cover. The canonical bundle H is trivial over the
two copies of the plane [1 : w] and [z : 1] (w = 1/z). Over their intersection, a point
(λ, λw) ∈ [1 : w] is mapped to the point (λz, λ) ∈ [z : 1] via mulitiplication by z. Hence
the cluthing for H⊗H⊕1 and H⊕H are as stated above. The map αt : [0, 1]→ GL2(C)
given by

αt =

(
cos(πt/2) − sin(πt/2)
sin(πt/2) cos(πt/2)

)
is a path in GL2(C) between (

1 0
0 1

)
and

(
0 1
1 0

)
so that we have a homotopy f ' g between the clutching functions for the two bundles
H ⊗H ⊕ 1, H ⊕H defined by (

z 0
0 1

)
αt

(
1 0
0 z

)
αt.

Hence the two bundles are isomorphic and we have a homomorphism Z[H]/(H − 1)2 →
K(S2).

We also have a reduced K-theory. Over pointed spaces, the inclusion {pt.} → X induces a
map K(X)→ Z sending a bundle to the dimension of its fiber over the connected component of
the basepoint. The reduced K-theory of X, K̃(X), is the kernel of this ring map. The inclusion
of a basepoint and the constant map to the base point induce a splitting K(X) ∼= K̃(X)⊕ Z.

2 Classification of vector bundles

Definition 3. The Grassmann manifold Gn(CN ) for n ≤ N is the collection of n-dimensional
complex vector subspaces of CN , topologized as UN/(Un × UN−n) (after choosing an orthonor-
mal basis for CN , the unitary group acts transitively on n-planes, with stabilizer those matrices
fixing the n-plane and its orthogoal complement). Taking the direct limit under the inclusions
Gn(CN )→ Gn(CN+1), we obtain Gn(C∞). These Grassmann manifolds come with canonical
bundles

En(CN )→ Gn(CN ), En(CN ) = {(P, v) : P ∈ Gn(CN ), v ∈ p},
En(C∞)→ Gn(C∞), En(C∞) = {(P, v) : P ∈ Gn(C∞), v ∈ p}.

The Gn(CN ) are closed complex manifolds of complex dimension n(N − n). One useful
representation is as n × (N − n) matrices (the rows spanning the n-plane) modulo the (left)
GLn action. Each n-plane then has a unique representative in reduced row echelon form, and
grouping these representatives by their pivot positions gives a cell structure on Gn(CN ). [For a
discussion of the characteristic maps, see [VBKT] proposition 1.17.] By introducing a column
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of zeros, we have a subcomplex Gn(CN ) ⊆ Gn(CN+1). For example, a 4-cell in G3(C5) included
into G3(C6) could look like 1 ∗ 0 0 ∗

0 0 1 0 ∗
0 0 0 1 ∗

 7→
 0 1 ∗ 0 0 ∗

0 0 0 1 0 ∗
0 0 0 0 1 ∗

 .

The elements Gn(C∞) can be represented by n×∞ matrices in reduced row echelon form
with only finitely many non-zero entries. By introducing a row of all zeros and single 1, we have
a subcomplex Gn(C∞) ⊆ Gn+1(C∞). For instance, the 4-cell above becomes (after inclusion
into G3(C∞) then inclusion into G4(C∞))

. . . 0 1 ∗ 0 0 ∗ 0

. . . 0 0 0 1 0 ∗ 0

. . . 0 0 0 0 1 ∗ 0

. . . 0 0 0 0 0 0 1

 .

Definition 4. The classifying spaces of the finite and infinite unitary groups are

BUn = ∪NGn(CN ) = Gn(C∞), BU = ∪nBUn

with respect to the maps coming from the previous paragraph.

We can begin to relateK-theory to homotopy and generalized cohomology with the following

Proposition 3 ([VBKT] 1.16, [AGP] 8.5.13). There is a bijection between homotopy classes of
maps from X to the Grassmannian of n-planes in C∞ and ismophism classes of rank n vector
bundles over X (assuming X is compact Hausdorff):

[X,BUn]→ VectnC(X), [f ] 7→ f∗(En(C∞)).

Proof. Suppose E
p−→ X is an n-dimensional vector bundle. First, we note that an isomorphism

E ∼= f∗(En(C∞)) is equivalent to a map g : E → C∞ that is a linear injection on each fiber
(such a g is what [AGP] calls a Gauss map). If we have such an isomorphism, consider the
following diagram

E
∼=//

p
$$

f∗En(C∞)
f̃ //

��

En(C∞)
π //

��

C∞

X
f // BUn

(where π(P, v) = v). The composition g = f̃ ◦ π is a linear injection on each fiber since both f̃
and π are. Conversely, given such a g, define f(x) = g(p−1(x)) ∈ BUn to get an isomorphism
E ∼= f∗En(C∞)

v ∈ p−1(x) 7→ ((f(x), g(v)), x) ∈ f∗En(C∞).

• [Surjectivity.] Let E
p−→ X be an n-dimensional vector bundle, X = ∪mi=1Ui a finite open

cover over which E is trivial, and {φi}i a partition of unity subordinate to the cover. For
(x, v) ∈ p−1(Ui), the map (x, v) 7→ φi(x)v ∈ Cn extends to a map gi : E → Cn that is
zero outside of p−1(Ui). Putting these together gives a map g : E → (Cn)m ⊆ C∞ that is
a linear injection on each fiber.
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• [Injectivity.] If E ∼= f∗0En(C∞), f∗1En(C∞), let g0, g1 : E → C∞ be maps which are linear
injections on each fiber p−1(x) as discussed at the beginning of the proof. We want to
show that g0 ' g1 via gt that are linear injections on each fiber, so that f0 ' f1 via
ft(x) = gt(p

−1(x)). Let At, Bt : C∞ → C∞ be the homotopies

At(zi) = (1− t)(z1, z2, z3, . . . ) + t(z1, 0, z2, 0, z3, 0, . . . ),

Bt(zi) = (1− t)(z1, z2, z3, . . . ) + t(0, z1, 0, z2, 0, z3, 0, . . . ).

We have g0 ' A1 ◦ g0 =: G0 (putting g0 into the odd coordinates), g1 ' B1 ◦ g1 =: G1

(putting g1 into the even coordinates), and G0 ' G1 via (1 − t)G0 + tG1 (all through
maps that are linear injections on each fiber).

Here is another splitting K(X) (X compact) that agrees with K(X) = K̃(X)⊕ Z when X
is connected. The function d : VectC(X)→ [X,N], dE(x) = dim p−1(x), extends to d̄ : K(X)→
[X,Z]. Denote the kernel of d̄ by K̂(X). We have K(X) = K̂(X)⊕ [X,Z] (given f : X → Z, X
decomposes as a finite union X = ∪nf−1(n) and we take the trivial virtual bundles of dimension
n over f−1(n) to obtain a splitting).

Denote by VectsC(X) the colimit of the VectkC(X) under the inclusions [E] 7→ [E ⊕ ε] where
ε is the trivial one-dimensional bundle over X.

Lemma 1. If X is compact Hausdorff and E
p−→ X is a complex vector bundle, then there is

another bundle E′
p′−→ X such that E ⊕ E′ is trivial.

Proof. Let X = ∪Ui be a finite cover such that p−1(Ui) ∼= Ui×Cni and let {φi}i be a partition
of unity subordinate to {Ui}i. Define gi : E → Cni by g(x, v) = φi(x)v for (x, v) ∈ Ui ×Cni (so
gi is zero outside p−1(Ui)) and use these as coordinates for a function g : E →

⊕
iCni . This g

is a linear injection on each fiber and the map G : E → X ×
⊕

iCni , G(e) = (p(e), g(e)) gives
E as a sub-bundle of a trivial bundle. Taking the orthogonal complement fiberwise gives the
desired E′.

Finally, we have the following

Theorem 1 ([AGP] 9.4.6-9.4.9). If X is compact, then

K̂(X) ∼= VectsC(X) ∼= [X,BU ],

from which it follows that
K(X) ∼= [X,BU × Z].

Proof. For each k ≥ 0 we have a map

φk : VectkC(X)→ K̂(X), φk([E]) = [E]− [εk],

commuting with the maps defining the colimit VectsC(X), hence a map φ : VectsC(X)→ K̂(X).
We want to show that φ is a semigroup isomorphism (hence an isomorphism of abelian groups).
For [E1]− [E2] ∈ K̂(X), there are E′i such that Ei ⊕ E′i ∼= εn is trivial by the previous lemma.
We have

[E1 ⊕ E′2]− [εn] = [E1]− [E2] ∈ K̂(X),
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so that d([E1 ⊕ E′2]) = d([εn]) = n is constant and φn([E1 ⊕ E′2]) = [E1] − [E2]. Hence φ is
surjective.

For injectivity of φ, if [E]− [εk] = [E′]− [εl] in K̂(X) (note that every element of the direct
limit has a representative in one of the VectkC(X)), then there is an n such that E ⊕ εl+n ∼=
E′ ⊕ εk+n. [We know that there is some bundle F such that E ⊕ εl ⊕ F ∼= E′ ⊕ εk ⊕ F , then
adding some F ′ such that F ′ ⊕ F ∼= εn gives what we want.] Hence E and E′ represent the
same element in VectsC(X).

Finally, we have

K̂(X) ∼= VectsC(X) = colimk VectkC(X) ∼= colimk[X,BUk] ∼= [X,BU ],

the last isomorphism since X is compact, and the isomorphism between the colimits commuting
with pullback (the inclusion ik : BUk → BUk+1 satisfies i∗k(Ek(C∞)) = Ek(C∞) ⊕ ε and the
inclusion VectkC(X)→ Vectk+1

C (X) takes [E] to [E ⊕ ε]).

3 Bott Periodicity and K-theory as a generalized cohomology
theory

References for the following section are [AGP] chapters 9 and 12.

Definition 5. [AGP] 12.1.4 An additive reduced cohomology theory Ẽ∗ is a sequence of
contravariant functors {Ẽn}n∈Z from the category of pointed topological spaces to abelian groups
with the following properties:

• (suspension isomorphisms) Ẽn(ΣX) ∼= Ẽn−1(X), natural in X,

• (homotopy invariance) if f ' g : (X,x0)→ (Y, y0) then f∗ = g∗ : Ẽ∗(X)→ Ẽ∗(Y ),

• (exactness) for each pair (X,A) there is an exact sequence

Ẽn(X ∪ CA)→ Ẽn(X)→ Ẽn(A)

(maps induced by inclusions, CA the reduced cone on A),

• (additivity) Ẽn(∨αXα) ∼=
∏
α Ẽ

n(Xα), induced by the inclusions.

Representability of cohomology theories are mediated by the following objects (proofs defi-
nitely omitted).

Definition 6. An Ω-presepectrum is a sequence of pointed spaces {En}n∈Z and weak homo-
topy equivalences εn : En → ΩEn+1.

The hard direction of the following theorem follows from Brown’s representability theorem,
[AGP] theorem 12.2.22.

Theorem 2 ([AGP] 12.3.2, 12.3.3). An Ω-prespectrum determines an additive reduced cohmol-
ogy theory Ẽ∗ on the category of pointed topological spaces via

Ẽn = [X,En]∗.

Conversely, an additve reduced cohomology theory Ẽ∗ on the category of pointed CW-complexes
determines an Ω-prespectrum {En}n∈Z such that

Ẽn = [X,En]∗.
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Theorem 3 (Bott periodicity, [AGP] 9.5.1 and appendix B). There is a homotopy equivalence

Ω2BU ' BU × Z.

[The homotopy groups of the classifying space BU are periodic with period two

πi+2(BU) = πi(Ω
2BU) = πi(BU × Z) =

{
Z i = 0,

πi(BU) = 0 i ≥ 1,

hence “periodicity.”]

Bott periodicity shows that we have an Ω-prespectrum consisting of

E2n = BU × Z, E2n+1 = ΩBU,

hence a reduced cohomology theory

Ẽn(X) = [X,En]∗ =: K̃n(X)

which agrees with our previous definition on compact Hausdorff X.

3.1 Another version of Bott periodicity

Given spaces X and Y , the projections p1, p2 : X × Y → X,Y give a multiplication

K(X)⊗K(Y )
µ−→ K(X × Y ), µ(a⊗ b) = p∗1(a)p∗2(b)

or in the reduced case
K̃(X)⊗ K̃(Y )

µ̃−→ K̃(X ∧ Y ).

Taking Y = S2 we get isomorphisms.

Theorem 4 ([VBKT] 2.2, [Bott] appendix I). We have isomorphisms via the external products
µ, µ̃ defined above:

K(X)⊗K(S2)
∼=−→ K(X × S2), K̃(X)⊗ K̃(S2)

∼=−→ K̃(X ∧ S2) ∼= K̃(Σ2X).

Knowledge that K̃(S2) ∼= Z (generated by H − 1) gives another version of Bott periodicity.

Theorem 5 (Bott periodicity, [VBKT] 2.11). There is an isomorphism

K̃(X)
⊗(H−1)−−−−−→ K̃(X)⊗ K̃(S2)

µ̃−→ K̃(X ∧ S2) ∼= K̃(Σ2X),

so that the reduced K-theory of X is 2-periodic under suspension.

4 An application of K-theory

Although proved earlier using other techniques, there is a (relatively) simple proof of the fol-
lowing theorem using K-theory, cf. [VBKT] section 2.3 or [AGP] chapter 10.

Theorem 6. The only spheres that are H-spaces are

S0, S1, S3, S7,

coming from the algebra structure on the norm one elements of R, C, H, and O.
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The proof uses the existence of the Adams operations in K-theory and the splitting
principle.

Definition 7 (Adams operations). For a compact space X and k ≥ 0 there are ψk : K(X)→
K(X) satisfying:

• f∗ψk = ψkf∗ for f : X → Y ,

• ψk(L) = Lk for line bundles L,

• ψkψl = ψkl,

• ψp(x) ≡ xp(modp).

Theorem 7 (splitting principle). Given a vector bundle E
p−→ X over a compact space, there is

a compact space P (E) and a map P (E)
f−→ X such that f∗P (E) splits as a sum of line bundles

and f∗ : K(X) → K(F (E)) is injective. [Here P (E) is a projective bundle over X - remove

the zero section from E
p−→ X and quotient by the C× action or take the space of lines in each

fiber.]

5 Other flavors of K-theory

We briefly mention aspects of other incarnations of K-theory.

5.1 Real K-theory

Here is the version of Bott periodicity for real vector bundles.

Theorem 8. There is a homotopy equivalence

Ω8BO ' BO × Z.

Hence the cohomology theory associated to KO has period eight instead of period two.

5.2 Algebraic K-theory

The following theorem of Swan shows links to other areas of mathematics.

Theorem 9. Suppose X is compact Hausdorff and let R = C(X;R) be the ring of real valued

continuous functions on X. If E
p−→ X is an R-vector bundle, then the ring of global sections

Γ(X) = {s : X → E : p ◦ s = 1X} is a finitely generated projective R-module and every finitely
generated projective R-module arises in this fashion.

Focusing on finitely generated projective modules over a given ring leads to algebraic K-
theory.

Definition 8. Let R be a ring and define K0(R) to be the Grothendieck group of the monoid of
finitely generated projective R-modules under direct sum. K0(R) becomes a ring with product
extending the tensor product of modules. K0 is a covariant functor from Rings to Rings. Every
ring has a map Z→ R and the cokernel of the induced map gives the reduced group, K̃0(R).

As an example, if R is a number ring, K̃0(R) is the class group of R. There are definitions
for higher K-groups, but we will not discuss them here.
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