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1 Preliminaries

In this section, we introduce some of the ideas needed to prove desired results about James’
space. All of our vector spaces are real. We being with some definitions.

A (Schauder) basis in a separable Banach space (X, | - ||) is a sequence of vectors e, € X
such that every x € X can be uniquely written as a convergent series Y p- | age, with oy € R.
We have canonical projections P, : X — X, P,(> 72, axer) = > p_q ager and coordinate
functionals, e}, (3.7, ager) = .

[A few remarks. First, bases are ordered and the order matters; there is a notion of an
unconditional basis, but James’ Space does not have an unconditional basis, so we will not
discuss it at any length. Second, not every separable Banach space has a basis (Enflo, 1973),
although most familiar examples do. Every Banach space contains a basic sequence (a basis for
its closed linear span), but not every Banach space contains an unconditional basic sequence
(Gowers and Maurey, 1993).]

We now show that the canonical projections and coordinate functionals are continuous, in
fact uniformly bounded. We call K = sup,, || P,,|| the basis constant for the basis ej and say
the basis is monotone if K = 1.

Proposition 1. If (X, || - ||) is a Banach space with basis ey, the the canonical projections are
uniformly bounded

The proposition follows from the following lemma (noting that || P, (D>, arer)|| < |[{ax}trlly
using the notation that follows).

Lemma 1. If Y = {{ax}r € RN : Y32 | ager, converges in (X, || - |)} and
H{owtrlly = sup, |l >p_y arexll}. then (Y, || - |ly) is a Banach space isomorphic to X.

Proof. It is clear that || - ||y is a norm. To see that Y is complete, let {ag)}k be a Cauchy
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and n, such that for n,m > n. we have

Then for j = je and i — oo we have (for all n)

n

Z (ak — 04;]6 ) ek

k=1

<e

—

and for n,m > n.
m
Zakek Zakek—Za ek+2ak ek
k=n

<[~ Yo

< 36.

(Je)

Z% €k

Hence ), ayep converges and Y is complete.
The map S : Y — X given by S({ow}r) = > ;2 aey is clearly a linear bijection, and is
also continuous since

IS {e )l < SUp{

} = [{ew}telly
(note that limy, oo || > peq akexl] = |S({ar}r)|]). By the open mapping theorem, S~ is con-
tinuous and there is a K such that ||[{ax}rlly < K| > peq akexl- O
More generally we have the following (proof omitted).
Proposition 2. A sequence ey, of a Banach space (X, || -||) is a basis if and only if
1. e # 0 for each k,
2. X = (ep)r, and

3. there is an M such that for all n < m and oy € R we have
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Next we have a characterization of reflexivity for a Banach space with basis.

Theorem 1. A Banach space (X, || - ||) with basis e, is reflexive if and only if the basis is
shrinking: for every f € X* we have

Jim sup {rfmr x = kzakek, ]l = 1} —



and
boundedly complete: if a € R is such that
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Proof. Recall that X is reflexive if and only if the unit ball is weakly compact (a consequence
of Alaoglu’s theorem).
If X is reflexive and has a non-shrinking basis e, then there is an f € X*, ¢ > 0, and

sequence T, = > ;7 a,(cn)ek with ||z,|| = 1 and p, — oo such that |f(zy)| > € for every

n. Because X is reflexive, {z,} has a weakly convergent subsequence, x, L Along this
subsequence, we have ej(x,;) — 0 and e} (x,,) — ej(x) so that = 0 (all of its coordinates
are zero), but € < |f(zp,)| = |f(0)| = 0, a contradiction. Hence a basis for a reflexive space is
shrinking.

If X is reflexive and oy, are such that sup,{|| >_p_; awex||} < oo, then x, = >")'_; axey has
a weakly convergent subsequence (using reflexivity), zp, K T = > rey Brek, then oy, = By
for all k£ because ay = e} (xn,) — €j(x) = fi. Hence a basis in a reflexive space is boundedly
complete.

We now assume that the basis is shrinking and boundedly complete and show that X is
reflexive by proving that the unit ball is weakly compact. To this end, let

o= BVex € {Jlz] <1}.
k=1

For a fixed k the sequence B,in) is bounded, |B,(€n)] < 2K/|leg|| (note the for any = = > 72, apey €
X and n > 0,p > 0 we have || 777 age|| < 2K|z|| where K is the basis constant). Hence
there are ¢, such that for a fixed k, B,i n) converges, and, using a diagonal argument, p,, such
that B,ip") — B, for some i, € R. For every n, N we have ||Py(yp,)|| < K||yp,|| < K so that
I Zgzl Brex|| < K for all N. Because e is boundedly complete, there is a y € X such that

Y= pey Brek-
We claim that y,, converges weakly to y. Let f € X™* and € > 0. Since ey, is shrinking, there

is an N such that sup{|f(z)| : @ = ;- y arex, [|z]| = 1} < e. Choose M such that || S (Br—

,(Cp"))ekH < € for n > M (remember Bl(cp”) — By for all k). Recall that || Zgjﬁ ,(f")ekH < 2K
for all p > 0 and let p,p, tend to infinity to obtain || 3,y Brer| < 2K. Hence for p, > M,
we have
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and yp, v Y. O

For example, in our favorite non-reflexive spaces co and ¢!, the “standard basis” ey (l) = i
fails to be boundedly complete in ¢y (sup,{|| > p_; €xlloo} < o0 but Y;_; ex does not converge



in ¢p), and fails to be shrinking in ¢! (for instance, if f(}°, arer) = >, o, then f(ex) =1 for
all k).
We need a few more facts about shrinking bases.

Proposition 3. If e is a shrinking basis for a Banach space (X,| - ), then €} is a basis for
X* with coordinate functionals e, € X** and the basis constant for e, is no more than the basis
constant for ey. (In fact, €} is a basis for X* if and only if ey, is shrinking.)

Proof. First note that for all n we have
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If f € X*, then

(=g (L)

k=1

(&)
k=n-+1

ji:(lkek
k

< [Ifnll(X + K) — 0

as n — oo because the basis is shrinking, where f,, is the restriction of f to (e : k > n)r. Hence
X* is the closed linear span of the coordinate functionals ej..
Forn <m, e>0, op € R, and || Y, Brex|| = 1 such that
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where K is the basis constant for e;. Hence e is a basis of X*, with basis constant smaller
than K. Finally, it is clear that the e act as the coordinate functionals for the ef. O

Finally, we characterize X** for Banach spaces with a shrinking basis.



Proposition 4. Let (X, | - ||) be a Banach space with shrinking basis ey,

{{ak}k eRVY: sup{ Zakek } } , and |[{artllz = sup{ Zakek }

Then (Z,|| - ||z) is a Banach space and the map T : X** — Z given by T'(¢) = {p(€})}r is an
isomorphism, isometric if ey is monotone.

Proof. The proof that Z is a Banach space is similar to that of Lemma 1, and T is clearly
linear. If T'(¢) = {#(e})}x = 0, then for every f € X* we have

=9 (Z f(ek)ez> = flex)dler) =
k K

so that T is injective. To see that T is surjective, let {ax}r € Z, f € X*, and n < m. We have

> afler) > akex
k=n k=n

as n — oo because ey, is shrinking (here f, is the restriction of f to (eg:k > n)r). Hence
>k o f(er) converges and we can define ¢ : X* — R by ¢o(f) = >, o f(ex), which is clearly
linear with T'(¢9) = {ax }k, and bounded because for any n

> agf(er) > akey
k=1 k=1

Finally, we have the bounded
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1T ()l z = Sup{ Z } = sup { > (e fer) }
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= {‘ (Zf ex)e ) } > sup{9(f)}
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since Y p_, f(ex)er — f. Soif K =1, T is an isometry. O

The last two propositions show that if X has a shrinking basis, we can identify X* and X**
with sequence spaces.

2 James’ space

We now introduce the subject of this paper, the space
J={x € o(R) : [|z]|; < o0}

where || - || s is defined by

. 1/2
2l = SUP{ (Z |z (Pr+1) — 36(1%)’2) 2<1<p1 <o < pl}-
k=1
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We will also make use of the equivalent norm (for which the isometric isomorphism J 2 J**
holds) given by

! 1/2
2] cye = sup { (Iw(pz) —2(p)*+ > [2(prr) — a?(pk)!2> c2<1<p <o < pl}-

k=1
The space J has some interesting properties, such as
1. J is not reflexive and does not contain any subspaces isomorphic to ¢y or 1,
2. J has codimension one in J** under the canonical injection ¢ : J — J**,

3. J (with the “cyclic quadratic variation” norm above) is isometrically isomorphic to J**
(but not via the canonical injection!),

4. J is not the underlying real space of a complex Banach space (we do not show this, but it
follows from the fact that dimg(J**/J) =1 is odd since if X is the underlying real space
of the complex space Xy, then X**/X = X3*/ Xy, real duals on the left, complex duals
on the right),

5. J does not have an unconditional basis (we do not show this, but a Banach space with
an unconditional basis is either reflexive, contains cg, or contains £1).

Properties 1,2, and 3 follow from the next series of propositions.

Proposition 5. (J,||-||s) is a Banach space and ey, defined by ex(l) = 6, is a monotone basis
for J

Proof. That || - ||; is a norm on J is obvious and we now show completeness. If z; € J is such
that > [|25]ls < oo, then |z; (k)| = limp—oo |;(k) — 25 (n)| < [lzj]ls, D272, (k) = ay exists
and oy, — 0 (since ¢ is complete). For x = Y 72 | ager we have
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To see that e is monotone, let p < ¢ and note that
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(with equality when extending by zero for instance).

Finally, to see that J = (eg)r, let z € X, € >0,2<1[,1<p; <--- < p; such that
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(fo(pkﬂ) —:L“(pk)|2> > ||z||; — e

k=1

Then ||z — 22:1 z(k)er||s < €, and ey is a basis for J.
O

Proposition 6. (J, || -||s) is not reflexive (more specifically, ey, is not boundedly complete).

Proof. Let s, = > }_; ex. Then ||s,|/; =1 for every n > 1, but s,, does not converge in J, e.g.
|8 — snll7 = V2 for n # m. O

Proposition 7. The basis ey is shrinking.

Proof. If not, there is an f € X* e > 0, and y; = ZZL:*;Z ,Blgi)ek with n; increasing to infinity,

llyills =1, and f(y;) > eforalli. If y =", y; € J, then f(y) > €, 1/i = 0o, a contradiction.
However y € J. Let e >0 and 2 <[,1 <pj < --- < p; such that

l
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k=1

Each term in the sum is either of the form
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depending on whether or not we are in the same “block”. We get
o 1ill3
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and y € J. O
Proposition 8. J** = (J) ® Rsn, where soo is the weak-+ limit of s, = > p_; ek.

Proof. From Proposition 4, J** is isomorphic the the space Z of seqences {ay}r such that
{aw il z = sup,{I| Do peq aerlls} < oo. If {ax}y is such a sequence, then A = limy, oy, clearly
exists, and ), agey, € J if and only if A = 0. Hence any ¢ = {a}}r € J** can be decomposed
as

¢ = {ar — A} + Asoo.

Proposition 9. J is isometrically isomorphic to J** under | - ||cye-

Proof. Define U : Z — (J, || - |leye) (With Z isometrically isomorphic to J** as in Proposition 4)
by

U({arkr) = =Xer + Y _(ar — Nex

k>1



where A = limy a, as in the previous proposition. U is clearly linear, and surjective since for
>k aker € J we have

U((ag,as,...) — @15x) Zakek,

with so as in the previous proposition. To see that U is an isometry, let {ax}r € Z and
compute

HU({ak}k)Hcyc
l -1
= sup {max {(apz — ap,) 2 + Z Opyyy = Opy,) O‘IQH + 041231 + Z(apk+1 - O‘pk)Q} : lapk}
k=1 k=1

with the “max” term coming from whether or not the initial —\ term is used to compute
the cyclic quadratic variation. On the other hand we have

{ow}ellZ = sup

g A€k

cyc
l -1
2 2 2 2 2
= sup {max {(am - apl) + Z(apk+1 B apk) ) Oy + Xy + Z(O‘pkﬂ B apk) } : l,pk}

k=1 k=1
with the “max” term coming from whether or not any of the “trailing zeros” were used in the
computation of the cyclic quadratic variation. Therefore U is an isometry. ]
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