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1 Preliminaries

In this section, we introduce some of the ideas needed to prove desired results about James’
space. All of our vector spaces are real. We being with some definitions.

A (Schauder) basis in a separable Banach space (X, ‖ · ‖) is a sequence of vectors ek ∈ X
such that every x ∈ X can be uniquely written as a convergent series

∑∞
k=1 αkek with αk ∈ R.

We have canonical projections Pn : X → X, Pn(
∑∞

k=1 αkek) =
∑n

k=1 αkek and coordinate
functionals, e∗n(

∑∞
k=1 αkek) = αn.

[A few remarks. First, bases are ordered and the order matters; there is a notion of an
unconditional basis, but James’ Space does not have an unconditional basis, so we will not
discuss it at any length. Second, not every separable Banach space has a basis (Enflo, 1973),
although most familiar examples do. Every Banach space contains a basic sequence (a basis for
its closed linear span), but not every Banach space contains an unconditional basic sequence
(Gowers and Maurey, 1993).]

We now show that the canonical projections and coordinate functionals are continuous, in
fact uniformly bounded. We call K = supn ‖Pn‖ the basis constant for the basis ek and say
the basis is monotone if K = 1.

Proposition 1. If (X, ‖ · ‖) is a Banach space with basis ek, the the canonical projections are
uniformly bounded

The proposition follows from the following lemma (noting that ‖Pn(
∑

k αkek)‖ ≤ ‖{αk}k‖Y
using the notation that follows).

Lemma 1. If Y =
{
{αk}k ∈ RN :

∑∞
k=1 αkek converges in (X, ‖ · ‖)

}
and

‖{αk}k‖Y = supn{‖
∑n

k=1 αkek‖}, then (Y, ‖ · ‖Y ) is a Banach space isomorphic to X.

Proof. It is clear that ‖ · ‖Y is a norm. To see that Y is complete, let
{
α
(i)
k

}
k

be a Cauchy

sequence in Y . Then for a fixed l, α
(i)
l is Cauchy because

∣∣∣α(i)
l − α

(j)
l

∣∣∣ ‖el‖ =

∥∥∥∥∥
l∑

k=1

(
α
(i)
k − α

(i)
k

)
ek −

l−1∑
k=1

(
α
(i)
k − α

(i)
k

)
ek

∥∥∥∥∥ ≤ 2 sup
n

{∥∥∥∥∥
n∑
k=1

αkek

∥∥∥∥∥
}
→ 0

as i, j → ∞. Hence α
(n)
k has a limit, limn α

(n)
k =: αk. Let ε > 0, jε such that for i, j ≥ jε and

for every n > 0 we have ∥∥∥∥∥
n∑
k=1

(
α
(i)
k − α

(j)
k

)
ek

∥∥∥∥∥ < ε,
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and nε such that for n,m ≥ nε we have∥∥∥∥∥
m∑
k=n

α
(jε)
k ek

∥∥∥∥∥ < ε.

Then for j = jε and i→∞ we have (for all n)∥∥∥∥∥
n∑
k=1

(
αk − α

(jε)
k

)
ek

∥∥∥∥∥ ≤ ε,
and for n,m ≥ nε∥∥∥∥∥

m∑
k=n

αkek

∥∥∥∥∥ =

∥∥∥∥∥
m∑
k=n

αkek −
m∑
k=n

α
(jε)
k ek +

m∑
k=n

α
(jε)
k ek

∥∥∥∥∥
≤

∥∥∥∥∥
m∑
k=1

αkek −
m∑
k=1

α
(jε)
k ek

∥∥∥∥∥+

∥∥∥∥∥
n−1∑
k=1

αkek −
n−1∑
k=1

α
(jε)
k ek

∥∥∥∥∥+

∥∥∥∥∥
m∑
k=n

α
(jε)
k ek

∥∥∥∥∥
≤ 3ε.

Hence
∑

k αkek converges and Y is complete.
The map S : Y → X given by S({αk}k) =

∑∞
k=1 αkek is clearly a linear bijection, and is

also continuous since

‖S({αk}k)‖ ≤ sup
n

{∥∥∥∥∥
n∑
k=1

αkek

∥∥∥∥∥
}

= ‖{αk}k‖Y

(note that limn→∞ ‖
∑n

k=1 αkek‖ = ‖S({αk}k)‖). By the open mapping theorem, S−1 is con-
tinuous and there is a K such that ‖{αk}k‖Y ≤ K‖

∑∞
k=1 αkek‖.

More generally we have the following (proof omitted).

Proposition 2. A sequence ek of a Banach space (X, ‖ · ‖) is a basis if and only if

1. ek 6= 0 for each k,

2. X = 〈ek〉R, and

3. there is an M such that for all n ≤ m and αk ∈ R we have∥∥∥∥∥
n∑
k=1

αkek

∥∥∥∥∥ ≤M
∥∥∥∥∥
m∑
k=1

αkek

∥∥∥∥∥ .
Next we have a characterization of reflexivity for a Banach space with basis.

Theorem 1. A Banach space (X, ‖ · ‖) with basis en is reflexive if and only if the basis is
shrinking: for every f ∈ X∗ we have

lim
n→∞

sup

{
|f(x)| : x =

∞∑
k=n

αkek, ‖x‖ = 1

}
= 0
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and
boundedly complete: if αk ∈ R is such that

sup
n

{∥∥∥∥∥
n∑
k=1

αkek

∥∥∥∥∥
}
<∞,

then there is an x ∈ X such that x =
∑∞

k=1 αkek.

Proof. Recall that X is reflexive if and only if the unit ball is weakly compact (a consequence
of Alaoglu’s theorem).

If X is reflexive and has a non-shrinking basis ek, then there is an f ∈ X∗, ε > 0, and

sequence xn =
∑∞

k=pn
α
(n)
k ek with ‖xn‖ = 1 and pn → ∞ such that |f(xn)| > ε for every

n. Because X is reflexive, {xn} has a weakly convergent subsequence, xni
wk→ x. Along this

subsequence, we have e∗k(xni) → 0 and e∗k(xni) → e∗k(x) so that x ≡ 0 (all of its coordinates
are zero), but ε < |f(xni)| → |f(0)| = 0, a contradiction. Hence a basis for a reflexive space is
shrinking.

If X is reflexive and αn are such that supn{‖
∑n

k=1 αkek‖} <∞, then xn =
∑n

k=1 αkek has

a weakly convergent subsequence (using reflexivity), xni
wk→ x. If x =

∑∞
k=1 βkek, then αk = βk

for all k because αk = e∗k(xni) → e∗k(x) = βk. Hence a basis in a reflexive space is boundedly
complete.

We now assume that the basis is shrinking and boundedly complete and show that X is
reflexive by proving that the unit ball is weakly compact. To this end, let

yn =

∞∑
k=1

β
(n)
k ek ∈ {‖x‖ ≤ 1}.

For a fixed k the sequence β
(n)
k is bounded, |β(n)k | ≤ 2K/‖ek‖ (note the for any x =

∑∞
k=1 αkek ∈

X and n > 0, p ≥ 0 we have ‖
∑n+p

k=n αkek‖ ≤ 2K‖x‖ where K is the basis constant). Hence

there are qn such that for a fixed k, β
(qn)
k converges, and, using a diagonal argument, pn such

that β
(pn)
k → βk for some βk ∈ R. For every n,N we have ‖PN (ypn)‖ ≤ K‖ypn‖ ≤ K so that

‖
∑N

k=1 βkek‖ ≤ K for all N . Because ek is boundedly complete, there is a y ∈ X such that
y =

∑∞
k=1 βkek.

We claim that ypn converges weakly to y. Let f ∈ X∗ and ε > 0. Since ek is shrinking, there

is an N such that sup{|f(x)| : x =
∑

k≥N αkek, ‖x‖ = 1} < ε. Choose M such that ‖
∑N−1

k=1 (βk−
β
(pn)
k )ek‖ < ε for n ≥ M (remember β

(pn)
k → βk for all k). Recall that ‖

∑N+p
k=N β

(pn)
k ek‖ ≤ 2K

for all p ≥ 0 and let p, pn tend to infinity to obtain ‖
∑

k≥N βkek‖ ≤ 2K. Hence for pn ≥ M ,
we have

|f(y)− f(ypn)| ≤

∣∣∣∣∣f
(
N−1∑
k=1

(
βk − β

(pn)
k

)
ek

)∣∣∣∣∣+

∣∣∣∣∣∣f
∑
k≥N

βkek

∣∣∣∣∣∣+

∣∣∣∣∣∣f
∑
k≥N

β
(pn)
k ek

∣∣∣∣∣∣
≤ ‖f‖ε+ 2Kε+ 2Kε,

and ypn
wk→ y.

For example, in our favorite non-reflexive spaces c0 and `1, the “standard basis” ek(l) = δkl
fails to be boundedly complete in c0 (supn{‖

∑n
k=1 ek‖∞} <∞ but

∑n
k=1 ek does not converge
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in c0), and fails to be shrinking in `1 (for instance, if f(
∑

k αkek) =
∑

k αk, then f(ek) = 1 for
all k).

We need a few more facts about shrinking bases.

Proposition 3. If ek is a shrinking basis for a Banach space (X, ‖ · ‖), then e∗k is a basis for
X∗ with coordinate functionals ek ∈ X∗∗ and the basis constant for e∗k is no more than the basis
constant for ek. (In fact, e∗k is a basis for X∗ if and only if ek is shrinking.)

Proof. First note that for all n we have∥∥∥∥∥
∞∑

k=n+1

αkek

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
k=1

αkek

∥∥∥∥∥+

∥∥∥∥∥
∞∑
k=1

αkek

∥∥∥∥∥ ≤ (1 +K)

∥∥∥∥∥
∞∑
k=1

αkek

∥∥∥∥∥ .
If f ∈ X∗, then∣∣∣∣∣

(
f −

n∑
k=1

f(ek)e
∗
k

)(∑
k

αkek

)∣∣∣∣∣ =

∣∣∣∣∣f
( ∞∑
k=n+1

αkek

)∣∣∣∣∣
≤ ‖fn‖(1 +K)

∥∥∥∥∥∑
k

αkek

∥∥∥∥∥→ 0

as n→∞ because the basis is shrinking, where fn is the restriction of f to 〈ek : k > n〉R. Hence
X∗ is the closed linear span of the coordinate functionals e∗k.

For n ≤ m, ε > 0, αk ∈ R, and ‖
∑

k βkek‖ = 1 such that∣∣∣∣∣
(

n∑
k=1

αke
∗
k

)(∑
k

βkek

)∣∣∣∣∣ ≥
∥∥∥∥∥
m∑
k=1

αke
∗
k

∥∥∥∥∥− ε,
we have ∥∥∥∥∥

n∑
k=1

αke
∗
k

∥∥∥∥∥ ≤
∣∣∣∣∣
(

n∑
k=1

αke
∗
k

)(∑
k

βkek

)∣∣∣∣∣+ ε

=

∣∣∣∣∣
(

m∑
k=1

αke
∗
k

)(
n∑
k=1

βkek

)∣∣∣∣∣+ ε

≤

∥∥∥∥∥
m∑
k=1

αke
∗
k

∥∥∥∥∥
∥∥∥∥∥

n∑
k=1

βkek

∥∥∥∥∥+ ε

≤ K

∥∥∥∥∥
m∑
k=1

αke
∗
k

∥∥∥∥∥
∥∥∥∥∥∑

k

βkek

∥∥∥∥∥+ ε

= K

∥∥∥∥∥
m∑
k=1

αke
∗
k

∥∥∥∥∥+ ε,

where K is the basis constant for ek. Hence e∗k is a basis of X∗, with basis constant smaller
than K. Finally, it is clear that the ek act as the coordinate functionals for the e∗k.

Finally, we characterize X∗∗ for Banach spaces with a shrinking basis.
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Proposition 4. Let (X, ‖ · ‖) be a Banach space with shrinking basis ek,

Z =

{
{αk}k ∈ RN : sup

n

{∥∥∥∥∥
n∑
k=1

αkek

∥∥∥∥∥
}
<∞

}
, and ‖{αk}k‖Z = sup

n

{∥∥∥∥∥
n∑
k=1

αkek

∥∥∥∥∥
}
.

Then (Z, ‖ · ‖Z) is a Banach space and the map T : X∗∗ → Z given by T (φ) = {φ(e∗k)}k is an
isomorphism, isometric if ek is monotone.

Proof. The proof that Z is a Banach space is similar to that of Lemma 1, and T is clearly
linear. If T (φ) = {φ(e∗k)}k = 0, then for every f ∈ X∗ we have

φ(f) = φ

(∑
k

f(ek)e
∗
k

)
=
∑
k

f(ek)φ(e∗k) = 0,

so that T is injective. To see that T is surjective, let {αk}k ∈ Z, f ∈ X∗, and n ≤ m. We have∣∣∣∣∣
m∑
k=n

αkf(ek)

∣∣∣∣∣ ≤ ‖fn‖
∥∥∥∥∥
m∑
k=n

αkek

∥∥∥∥∥ ≤ (1 +K)‖fn‖‖{αk}k‖Z → 0

as n → ∞ because ek is shrinking (here fn is the restriction of f to 〈ek : k > n〉R). Hence∑
k αkf(ek) converges and we can define φ0 : X∗ → R by φ0(f) =

∑
k αkf(ek), which is clearly

linear with T (φ0) = {αk}k, and bounded because for any n∣∣∣∣∣
n∑
k=1

αkf(ek)

∣∣∣∣∣ ≤ ‖f‖
∥∥∥∥∥

n∑
k=1

αkek

∥∥∥∥∥ ≤ K‖f‖‖{αk}k‖Z .
Finally, we have the bounded

‖T (φ)‖Z = sup
n

{∥∥∥∥∥
n∑
k=1

φ(e∗k)ek

∥∥∥∥∥
}

= sup
n,‖f‖=1

{∥∥∥∥∥
n∑
k=1

φ(e∗k)f(ek)

∥∥∥∥∥
}

= sup
n,‖f‖=1

{∥∥∥∥∥φ
(

n∑
k=1

f(ek)e
∗
k

)∥∥∥∥∥
}
≥ sup

n
{φ(f)}

= ‖φ‖,

since
∑n

k=1 f(ek)e
∗
k → f . So if K = 1, T is an isometry.

The last two propositions show that if X has a shrinking basis, we can identify X∗ and X∗∗

with sequence spaces.

2 James’ space

We now introduce the subject of this paper, the space

J = {x ∈ c0(R) : ‖x‖J <∞}

where ‖ · ‖J is defined by

‖x‖J = sup

{(
l∑

k=1

|x(pk+1)− x(pk)|2
)1/2

: 2 ≤ l, 1 ≤ p1 < · · · < pl

}
.
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We will also make use of the equivalent norm (for which the isometric isomorphism J ∼= J∗∗

holds) given by

‖x‖cyc = sup

{(
|x(pl)− x(p1)|2 +

l∑
k=1

|x(pk+1)− x(pk)|2
)1/2

: 2 ≤ l, 1 ≤ p1 < · · · < pl

}
.

The space J has some interesting properties, such as

1. J is not reflexive and does not contain any subspaces isomorphic to c0 or `1,

2. J has codimension one in J∗∗ under the canonical injection ι : J → J∗∗,

3. J (with the “cyclic quadratic variation” norm above) is isometrically isomorphic to J∗∗

(but not via the canonical injection!),

4. J is not the underlying real space of a complex Banach space (we do not show this, but it
follows from the fact that dimR(J∗∗/J) = 1 is odd since if X is the underlying real space
of the complex space X0, then X∗∗/X ∼= X∗∗0 /X0, real duals on the left, complex duals
on the right),

5. J does not have an unconditional basis (we do not show this, but a Banach space with
an unconditional basis is either reflexive, contains c0, or contains `1).

Properties 1,2, and 3 follow from the next series of propositions.

Proposition 5. (J, ‖ · ‖J) is a Banach space and ek defined by ek(l) = δkl, is a monotone basis
for J

Proof. That ‖ · ‖J is a norm on J is obvious and we now show completeness. If xj ∈ J is such
that

∑
j ‖xj‖J < ∞, then |xj(k)| = limn→∞ |xj(k) − xj(n)| ≤ ‖xj‖J ,

∑∞
j=1 xj(k) =: αk exists

and αk → 0 (since c0 is complete). For x =
∑∞

k=1 αkek we have

‖x‖J = sup

{(
l∑

k=1

|x(pk+1)− x(pk)|2
)1/2

: 2 ≤ l, 1 ≤ p1 < · · · < pl

}

≤ sup

{ ∞∑
j=1

(
l∑

k=1

|xj(pk+1)− xj(pk))|2
)1/2

: 2 ≤ l, 1 ≤ p1 < · · · < pl

}
≤
∑
j

‖xj‖J <∞.

To see that ek is monotone, let p ≤ q and note that∥∥∥∥∥
p∑

k=1

αkek

∥∥∥∥∥
J

= sup

{(
l∑

k=1

|αpk+1
− αpk |

2

)1/2

: 2 ≤ l, 1 ≤ p1 < · · · < pl ≤ p

}

≤ sup

{(
l∑

k=1

|x(pk+1)− x(pk)|2
)1/2

: 2 ≤ l, 1 ≤ p1 < · · · < pl ≤ q

}

=

∥∥∥∥∥
q∑

k=1

αkek

∥∥∥∥∥
J
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(with equality when extending by zero for instance).
Finally, to see that J = 〈ek〉R, let x ∈ X, ε > 0, 2 ≤ l, 1 ≤ p1 < · · · < pl such that(

l∑
k=1

|x(pk+1)− x(pk)|2
)1/2

≥ ‖x‖J − ε.

Then ‖x−
∑l

k=1 x(k)ek‖J < ε, and ek is a basis for J .

Proposition 6. (J, ‖ · ‖J) is not reflexive (more specifically, ek is not boundedly complete).

Proof. Let sn =
∑n

k=1 ek. Then ‖sn‖J = 1 for every n ≥ 1, but sn does not converge in J , e.g.
‖sm − sn‖J =

√
2 for n 6= m.

Proposition 7. The basis ek is shrinking.

Proof. If not, there is an f ∈ X∗, ε > 0, and yi =
∑ni+1

k=ni
β
(i)
k ek with ni increasing to infinity,

‖yi‖J = 1, and f(yi) > ε for all i. If y =
∑

i yi ∈ J , then f(y) > ε
∑

i 1/i =∞, a contradiction.
However y ∈ J . Let ε > 0 and 2 ≤ l, 1 ≤ p1 < · · · < pl such that

‖y‖2J − ε ≤
l∑

k=1

|y(pk+1)− y(pk)|2.

Each term in the sum is either of the form

1

i2
(yi(pk+1)− yi(pk))2 or

(
yi+j(pk+1)

i+ j
− yi(pk)

i

)2

≤ 2

(
yi+j(pk+1)

i+ j

)2

+ 2

(
yi(pk)

i

)2

depending on whether or not we are in the same “block”. We get

‖y‖2J ≤ 5
∞∑
i=1

‖yi‖2J
i2

<∞

and y ∈ J .

Proposition 8. J∗∗ = ι(J)⊕ Rs∞, where s∞ is the weak-∗ limit of sn =
∑n

k=1 ek.

Proof. From Proposition 4, J∗∗ is isomorphic the the space Z of seqences {αk}k such that
‖{αk}k‖Z = supn{‖

∑n
k=1 αkek‖J} <∞. If {αk}k is such a sequence, then λ = limk αk clearly

exists, and
∑

k αkek ∈ J if and only if λ = 0. Hence any φ = {αk}k ∈ J∗∗ can be decomposed
as

φ = {αk − λ}k + λs∞.

Proposition 9. J is isometrically isomorphic to J∗∗ under ‖ · ‖cyc.

Proof. Define U : Z → (J, ‖ · ‖cyc) (with Z isometrically isomorphic to J∗∗ as in Proposition 4)
by

U({αk}k) = −λe1 +
∑
k>1

(αk − λ)ek

7



where λ = limk αk as in the previous proposition. U is clearly linear, and surjective since for∑
k αkek ∈ J we have

U((α2, α3, . . . )− α1s∞) =
∑
k

αkek,

with s∞ as in the previous proposition. To see that U is an isometry, let {αk}k ∈ Z and
compute

‖U({αk}k)‖2cyc

= sup

{
max

{
(αpl − αp1)2 +

l∑
k=1

(αpk+1
− αpk)2, α2

pl
+ α2

p1 +
l−1∑
k=1

(αpk+1
− αpk)2

}
: l, pk

}

with the “max” term coming from whether or not the initial −λ term is used to compute
the cyclic quadratic variation. On the other hand we have

‖{αk}k‖2Z = sup
n


∥∥∥∥∥

n∑
k=1

αkek

∥∥∥∥∥
cyc


= sup

{
max

{
(αpl − αp1)2 +

l∑
k=1

(αpk+1
− αpk)2, α2

pl
+ α2

p1 +
l−1∑
k=1

(αpk+1
− αpk)2

}
: l, pk

}

with the “max” term coming from whether or not any of the “trailing zeros” were used in the
computation of the cyclic quadratic variation. Therefore U is an isometry.
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