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1 Groebner Bases

In this section we define Groebner Bases and discuss some of their basic properties, following
the exposition in chapter 2 of [2].

1.1 Monomial Orders and the Division Algorithm

Our goal is this section is to extend the familiar division algorithm from k[x] to k[x1, . . . , xn].
For a polynomial ring in one variable over a field, we have the

Theorem 1 (Division Algorithm). Given f, g ∈ k[x] with g 6= 0, there exists unique q, r ∈ k[x]
with r = 0 or deg(r) < deg(g) such that

f = gq + r.

We can use the division algorithm to find the greatest common divisor of two polynomials
via the

Theorem 2 (Euclidean Algorithm). For f, g ∈ k[x], g 6= 0, (f, g) = (rn) where rn is the last
non-zero remainder in the sequence of divisions

f = gq1 + r1

g = r1q2 + r2

r1 = r2q3 + r3

. . .

rn−2 = rn−1qn + rn

rn−1 = rnqn+1 + 0

Furthermore, rn = af + bg for explicitly computable a, b ∈ k[x] (solving the equations above).

We can use these algorithms to decide things such like ideal membership (when is f ∈
(f1, . . . , fm)) and equality (when does (f1, . . . , fm) = (g1, . . . , gl)).

In the above, we used the degree of a polynomial as a measure of the size of a polynomial and
the algorithms eventually terminate by producing polynomials of lesser degree at each step. To
extend these ideas to polynomials in several variables we need a notion of size for polynomials
(with nice properties).

Definition 1 (Monomial Order). A monomial order on Zn≥0 is a well-ordering ≤ such that
if α ≤ β, then α+ γ ≤ β + γ.
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We use a monomial order (as the name suggests) to order monomials of k[x1, . . . , xn] by
axα ≤ bxβ if α ≤ β (using the notation xα = xα1

1 · · · · · xαn
n where α = (α1, . . . , αn)). Here are

two basic examples.

• (lexicographic order) α > β if the left-most non-zero entry of α− β is positive,

• (graded lexicographic order) α > β if |α| > |β| or if |α| = |β| the left-most non-zero entry
of α− β is positive (here |γ| =

∑
i γi). Any monomial order for which α > β if |α| > |β|

will be refered to as a graded order.

For a given monomial order and a non-zero polynomial f =
∑

α aαx
α, we define the leading

term of f to be LT (f) := aβx
β where β is the largest exponent among α such that aα 6= 0,

the degree of f to be deg(f) := β, the leading coefficient LC(f) := aβ, and the leading
monomial LM(F ) := xβ.

Given a monomial order we have the following

Theorem 3 (Multivariate Division Algorithm). Given non-zero f, f1, . . . , fm ∈ k[x1, . . . , xn],
there exist r, ai ∈ k[x1, . . . , xn] with

f =
∑
i

aifi + r,

where r is a sum of monomials none of which is divisible by any of the LT (fi). Furthermore,
either aifi = 0 or deg(aifi) < deg(f).

Proof. Here is some pseudocode:

INPUT f, fi
ai = 0, r = 0
WHILE (f 6= 0) DO

i = 1
division occurred=FALSE
WHILE (i ≤ m and division occurred==FALSE) DO

IF LT (fi)|LT (f) THEN
ai = ai + LT (f)/LT (fi)
f = f − LT (f)/LT (fi)
division occured=TRUE

ELSE
i = i+ 1

IF division occurred==FALSE THEN
r = r + LT (f)
f = f − LT (f)

OUTPUT ai, r

As the following examples show, r and ai depend on the order of the fi, and while r = 0
clearly implies that f ∈ I = (f1, . . . , fn), the converse does not hold. We use lexicographic
order, with x > y.
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Example 1. Let f = x2y + xy2 + y2, f1 = y2 − 1, f2 = xy− 1. We get a1 = x+ 1, a2 = x, and
r = 2x+ 1. If we switch the order and let f1 = xy − 1, f2 = y2 − 1, we get a1 = x+ y, a2 = 1,
and r = x+ y + 1.

Example 2. Let f = xy2 − x and f1 = xy + 1, f2 = y2 − 1. We get a1 = y, a2 = 0, and
r = −x− y. If we switch the order and let f1 = y2 − 1, f2 = xy + 1, we get a1 = x, a2 = 0, and
r = 0.

These deficiencies are the motivation for the definition of Groebner basis that follows.

1.2 Definition, Existence, and Basic Properties of Groebner Bases

For motivation, (even though we’ve implicitly assumed finite generation of ideals thus far), we
recall the Hilbert basis theorem - more importantly, its proof.

Definition 2. A monomial ideal I ⊆ k[x1, . . . , xn] is an ideal generated by a set of monomials
{xα : α ∈ A} for some A ⊆ Zn≥0.

We have a preliminary version of the Hilbert basis theorem,

Theorem 4 (Dickson’s Lemma). If I = (xα : α ∈ A) is a monomial ideal, there exist

α(1), . . . , α(t) ∈ A such that I =
(
xα

(1)
, . . . , xα

(t)
)

.

Proof. See theorem 5 of chapter 2, section 4 of [2].

And of the course, the famous

Theorem 5 (Hilbert Basis Theorem). Every ideal of k[x1, . . . , xn] is finitely generated.

Proof. Fix a monomial order and let I be a non-zero ideal of k[x1, . . . , xn]. By Dickson’s lemma,
there are g1, . . . , gt ∈ I such that (LT (I)) = (LT (g1), . . . , LT (gt)). Clearly (g1, . . . , gt) ⊆ I.
Conversely, let f ∈ I and divide by (g1, . . . , gt) to get

f =
∑
i

aigi + r

where no term of the remainder is divisible by any of LT (gi). If r 6= 0, then LT (r) ∈ (LT (I)) =
(LT (gi)), which is impossible (else LT (gi)|LT (r) for some i). Hence I = (g1, . . . , gt).

Isolating the property (LT (I)) = (LT (g1), . . . , LT (gt)) for I = (g1, . . . , gt) used in the
Hilbert basis theorem gives us the following

Definition 3. A Groebner basis for an ideal I = (f1, . . . , fm) ⊆ k[x1, . . . , xn] (with respect
to a given monomial order) is a collection g1, . . . , gl ∈ I such that (LT (I)) = (LT (gi)), in which
case we have I = (gi).

The proof of the Hilbert basis theorem above gives us an important

Corollary 1. Every ideal of k[x1, . . . , xn] has a Groebner basis.

The frist property of Groebner bases we prove is

Theorem 6 (Uniqueness of Remainder). If (g1, . . . , gm) = I is Groebner basis, then the re-
mainder r defined in the division algorithm is independent of the ordering of the gi.
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Proof. Suppose f = g+ r = g′+ r′ ∈ k[x1, . . . , xn] with g, g′ ∈ I, r, r′ such that LT (gi) does not
divide any term of r, r′ for any i. Then LT (r− r′) ∈ (LT (I)) = (LT (gi)) and LT (gi)|LT (r− r′)
for some i. However, this is impossible as the terms of r, r′ are not divisible by LT (gi).

Corollary 2. If (g1, . . . , gm) = I is a Groebner basis, then f ∈ I if and only if the remainder
r in the division algorithm is zero.

Although the remainder is unique, the ai in the division algorithm still depend on the order
of the gi as the following example shows.

Example 3. Accepting that (x+ z, y− z) = I is a Groebner basis of I ⊆ k[x, y, z] with respect
to the lexicographic order and x > y > z, we divide f = xy in both orders to get

f = y(x+ z)− z(y − z)− z2, f = x(y − z) + z(x+ z)− z2,

with unique remainder r = −z2 but different coefficients.

1.3 Checking and Producing Groebner Bases - Buchberger’s Criterion and
Algorithm

We now consider whether or not a given basis is a Groebner basis (Buchberger’s criterion) and
how to produce a Groebner basis from a given basis (Buchberger’s algorithm).

Definition 4. The S-polynomial (with respect to a monomial order) of two non-zero polyno-
mials f, g ∈ k[x1, . . . , xn] is

S(f, g) =
xγ

LT (f)
f − xγ

LT (g)
g

where γi = max{αi, βi} and deg(f) = α, deg(g) = β (i.e. xγ is the least common multiple of
xα, xβ).

Clearly the leading term of the S-polynomial is a potential obstruction to (LT (I)) =
(LT (f1), . . . , LT (fm)) for an ideal I = (f1, . . . , fm), but it turns out that it is the only ob-
struction.

Theorem 7 (Buchberger’s Criterion). The basis (g1 . . . , gm) = I is a Groebner basis if and
only if for all i, j, S(gi, gj) has remainder zero after division by I (in some/every order of the
gk).

Proof. See theorem 6 of chapter 2, section 6 of [2].

Example 4. With lexicographic order and y > z > x, (y − x2, z − x3) is a Groebner basis for
the twisted cubic (t, t2, t3) since

S(y − x2, z − x3) = yx3 − zx2 = x3(y − x2)− x2(z − x3) + 0.

However, with lexicographic order and x > y > z, (−x2 + y,−x3 + z) is not a Groebner basis
since

S(−x2 + y,−x3 + z) = −xy + z = r 6= 0,

(neither −xy nor z is divisible by the leading terms −x2,−x3 of the generators of I).

Finally, we present an algorithm for producing a Groebner basis (g1, . . . , gl) for an ideal
I = (f1, . . . , fm) by adding in successive remainders of division of S-polynomials.
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Theorem 8 (Buchberger’s Algorithm). There is an algorithm to produce a Groebner basis for
I = (f1, . . . , fm).

Proof. The following (non-optimized) algorithm produces a Groebner basis (g1 . . . , gl) for an
ideal I = (f1, . . . , fm).

INPUT F = {f1, . . . , fm}
G = F
DO

G′ = G
FOR (all pairs p, q ∈ G′, p 6= q)

S = S(p, q)%G′ (the remainder of S(p, q) after division by G′)
IF S 6= 0 THEN G = G ∪ {S}

WHILE (G′ 6= G)
OUTPUT G = {g1, . . . , gl}

It is clear that I = (F ) ⊆ (G) ⊆ I at each step of the algorithm and that the result
is a Groebner basis by Buchberger’s criterion. The process terminates since k[x1, . . . , xn] is
Noetherian and (LT (G′)) ( (LT (G)) because LT (S(p, q)%G′) 6∈ (LT (G′)) if it is non-zero.

Example 5. Consider I = (x3 − 2xy, x2y − 2y2 + x) ⊆ k[x, y] with the graded lexicographic
order and x > y. The algorithm above produces the Groebner basis

I = (x3 − 2xy, x2y − 2y2 + x,−x2,−2xy,−2y2 + x).

The Groebner basis produced by the algorithm above can be large and redundant. We can
eliminate/modify a Groebner basis to produce a unique Groebner basis for an ideal I (with
respect to a monomial order), analogous to the reduced row echelon form of a system of linear
equations.

Definition 5. A reduced Groebner basis G for an ideal I ⊆ k[x1, . . . , xn] is a Groebner
basis such that

• LC(g) = 1 for all g ∈ G (G consists of monic polynomials),

• for every g ∈ G, no term of g is an element of (LT (G\{g})).

Theorem 9. Every ideal I ⊆ k[x1, . . . , xn] has a unique reduced Groebner basis.

Proof. See proposition 6, chapter 2, section 7 of [2].

Example 6. The reduced Groebner basis for the previous example (graded lexicographic,
x > y, I = (x3 − 2xy, x2y − 2y2 + x)) is

I = (x2, xy, y2 − x/2).

Having covered the “Groebner basics”, we move on to a brief overview of some applications.

2 Applications

There are many, many applications of Groebner bases to computational algebraic geometry;
here we offer a few (with most details omitted).
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2.1 Dimension

One can use Groeber bases to compute the dimension of an affine variety V = V (I), I =
(f1, . . . , fm) ⊆ k[x1, . . . , xn] by considering an appropriate “linearization”. We first discuss the
case where I = (m1, . . . ,mt) is a monomial ideal.

The variety defined by a monomial ideal is a finite union of coordinate subspaces of kn (i.e.
linear subspaces defined by the simultaneous vanishing of coordinate functions),

V = V

({
mj = xα

(j)
}
j

)
=
⋂
j

⋃
i

V

(
x
α
(j)
i
i

)
=
⋂
j

⋃
i s.t.
α
(j)
i >0

V (xi) ,

and its dimension is the maximum dimension of its components. If we define

Mj = {k ∈ [1, n] : xk|mj}, M = {J ⊆ [1, n] : J ∩Mj 6= for all j},

a little thought shows that the dimension of V is n−min{|J | : J ∈M}. The key to computing
dimension for arbitrary I is the following

Theorem 10. Let I ⊆ k[x1, . . . , xn] be an ideal and ≥ a graded monomial order. Then the
monomial ideal (LT (I)) has the same Hilbert function as I.

Proof. See proposition 4 of chapter 9, section 3 in [2].

So to find the dimension of the variety defined by I = (f1, . . . , fm), first compute a Groebner
basis I = (g1, . . . , gk) with respect to a graded monomial order, then determine the dimension
of the variety defined by (LT (I)) = (LT (gi)) (equality because we’re using a Groebner basis).

2.2 Projective Closure

Given an affine variety Va = V (I), I = (f1, . . . , fm) ⊆ k[x1, . . . , xn], we can consider its projec-
tivization, Vp = V (Ih) where Ih = (fh : f ∈ I) is the homogenization of I, and

fh = x
|deg(f)|
0 f(x1/x0, . . . , xn/x0) ∈ k[x0, . . . , xn]

the homogenization of f (deg(f) taken with respect to a graded order). To obtain generators
for Ih, one may naively from the ideal

J = (fh1 , . . . , f
h
m) ⊆ Ih,

but this is generally strictly smaller than Ih as the next example shows.

Example 7. Consider the twisted cubic, I = (f1, f2) = (x2 − x21, x3 − x31). We have J =
(fh1 , f

h
2 ) = (x0x2 − x21, x20x3 − x31), but the polynomial f3 = f2 − x1f1 = x3 − x1x2 ∈ I has

homogenization fh3 = x0x3 − x1x2 ∈ Ih\J .

However, if we start with a Groebner basis I = (g1, . . . , gk) with respect to a graded mono-
mial order, we have the following

Theorem 11. If I = (g1, . . . , gk) is a Groebner basis with respect to a graded monomial order
≥, then Ih = (gh1 , . . . , g

h
k ). Moreover, Ih = (gh1 , . . . , g

h
k ) is a Groebner basis with respect to the

monomial order ≥h given by xαxd0 >h x
βxe0 if α > β or α = β and d > e.

Proof. See theorem 4 of chapter 8, section 4 in [2].
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2.3 Elimination

This section concerns using Groebner bases to solve systems of polynomial equations by elimi-
nating variables. See chapter 3 of [2] for more applications of elimination.

Definition 6. The l-th elimination ideal of an ideal I ⊆ k[x1, . . . , xn] is the ideal of
k[xl+1, . . . , xn] given by

Il = I ∩ k[xl+1, . . . , xn].

With this definition, we have the

Theorem 12 (Elimination Theorem). Let G = {gi} ⊆ k[x1, . . . , xn] be a Groebner basis of an
ideal I with respect to the lexicographic order, x1 > · · · > xn. The for all l,

Gl = G ∩ k[xl+1, . . . , xn]

is a Groebner basis for the l-th elimination ideal Il.

Proof. Clearly, Gl ⊆ Il and (LT (Gl)) ⊆ (LT (Il)), so let f ∈ Il. Since f ∈ I and G is a
Groebner basis, there is a g ∈ G such that LT (g)|LT (f). Hence LT (g) ∈ k[xl+1, . . . , xn], and
because we are using lexicographic order with x1 > · · · > xn, if LT (g) ∈ k[xl+1, . . . , xn], then
g ∈ k[xl+1, . . . , xn]. Hence (LT (Il)) ⊆ (LT (Gl)) and Gl is a Groebner basis for Il.

Example 8. Consider the system of equations

x2 + y + z = 1

x+ y2 + z = 1

x2 + y + z2 = 1.

The ideal they generate has Groebner basis (with respect to the lexicographic order, x > y > z)

g1 = x+ y + z2 − 1

g2 = y2 − y − z2 + z

g3 = 2yz2 + z4 − z2

g4 = z6 − 4z4 + 4z3 − z2 = z2(z − 1)2(z2 + 2z − 1).

Working backwards from the last generator to the first, we find the solutions

(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1 +
√

2,−1 +
√

2,−1 +
√

2), (−1−
√

2,−1−
√

2,−1−
√

2).
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