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1 Simple Continued Fractions

Every irrational number x € R\Q has a unique representation of the form

T =ayg+ ———7— =[ao;a1,...,0n,...]),a0 € Z,a; € {1,2,3,... }i > 1
a1+a2+

a3+4.4

e.g.

m=1[3;7,15,1,292/1,1,1,2,1,...] (random?),
e=12;1,2,1,1,4,1,1,6,1,1,8,...] (not random),
=0;1,1,2,1,2,1,4,3,13,...] (random?),
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=1[1;1,1,1,1,1,...] (not random).
Rationals have two such (finite) representations

x = |ag;a,...,a,| = lag; a1, ...,a, —1,1].

For rational x, the continued fraction expansion is essentially the euclidean algorithm,
(p,q) — (¢,p mod ¢q), where we retain the quotient at each step. For instance

(355,113) ¥ (113,16) > (16,1) /3 (1,0)

and

355 1

— =3 )

ER g i
The a; are obtained by

1
Ty =T,a0 = |20|,Tit1 = 4 = [@it1; Qita, - - ] @1 = [Tiga].

If x = [ap; a1, as, .. .| then the rational numbers
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Pn
an
are the rational convergents of x. The convergents satisfy

= [ag; a1, . .., ap)

SFRCDICHE

which is the same as

Pn Pn-1 o L1 0 0 1 11
Gn  4n—1 - 0 1 1 0 01

which is the euclidean algorthim; if a = bg + r then

(1))

This gives the recurrence relation

& ApPn—1 + Pn—2
An AnQdn—1 + dn—2 ‘

Taking determinants, we have

n Pn—1 Pn
dnPn—-1 — Pnln-1 = (_1) ) -

and a little algebra gives

Pn—2 - Zﬁ o (_1)n_1an

qn—2 qn qnQdn—2

Qo1 Qo GnGn-1

From this we see that the convergents with n even are increasing and the convergents
with n odd are decreasing, and that each convergent with even n is less than each
convergent with odd n. Hence the convergents with n even increase to some limit z* and
the convergents with n odd decrease to some limit x, with x* < x,. The limits «* and x,
are equal by (1) (show g, > 2"=1/2) and (2), proving the convergence of infinite simple

continued fractions.

Also note

n = _1 k

x = lim p—:ao—kz( )
n—0 (n o Tkdk+1

and
1 1
S |xQn - pn| S .
dn+2 dn+1

One last identity that we will use is

- Pn + Pn—1ZTn+1
Pn +pn—1mn+1



(where ;41 = [an41; Anta, - . . |) which follows from

(pn+k($) ) _ (pn(x) Pn-1(7) > (pk—1($n+1) Pr—2(Tny1) > ( 1 )
Gntr () @ () gn-1(7) @—1(Tnt1)  @G—2(Tnt1) 0
after dividing and letting k — oo.
[Fun fact: The limit of the ratio of successive Fibonacci numbers approaches the
golden ratio.|

One reason to consider simple continued fractions are that the convergents are optimal
in the following sense.

Theorem. Let x = [ag;a,az,...] € R\Q. If0 < q < q, then if p/q # pn/qn
gz — p| > |g27 — P

In particular

2 - 12‘ > \ )
q dn
Conversely, if a/b is such that |a — bx| < |p — qz| for all 0 < ¢ < b,a/b # p/q, then a/b

is one of the convergents to x.

Proof. If |qx — p| > |gax — pn| and 0 < ¢ < ¢, then dividing by qq, gives

so that > ‘a: — ’;—” .
To prove the first assertion, note that (because of the alternating nature of the con-

vergents) we have

r—0P
q

' _ Pn _ Pnt1 Pn|  |Pnt1 —x‘
dn dn+1 dn dn+1
so that
T — & > 1 o 1 _ Ap42
dn dnn+1 dn+19n+2 Anqn+2
and
1 1
< |gnx — pl < )
An+2 Gn+1

Hence we may assume that ¢, 1 < ¢ < ¢g,. If ¢ = ¢, then

1
>

an

Pn
— -

an

q dn

1
<

1
<
InGn+1 ~ 2qn

Y

‘p Pn

and



proving |qz — p| > |gn® — pal.

If g1 < q < gy, let
(1) (1)-(1)
Gn  Gn-1 b q

with a,b € Z. Then q = aq, + bg,—1 < ¢, and we must have ab < 0. We also know
that p, — ¢,x and p,_1 — g,_1x are of opposite sign as well, so that a(p, — ¢,x) and
b(pn—1 — qn—17) have the same sign. Hence

p—qr = a(pp — @) + b(pu-1 — gn17) = |p — qz| = |a(pn — ¢u)| + [b(pr-1 — Gn-17)|
and

p — qx| > |pn-1 — gnor12| > |pn — guz|

as desired.
Conversely, let a/b # p,/q, for any n be a best approximant as in the statement of
the theorem. If a/b < ay then

|x—a0\<‘x—%’§|bx—a\ (b>1),

a contradiction. Now, either a/b > p;/q; or there is an n with a/b between p,_1/¢n_1
and ppy1/¢ne1- In the first case, we again get a contradiction since

implies |bx —a| > 1/q¢1 = 1/ay, but |ag — x| < 1/(qoq1) = 1/a; and ap is a better
approximation (with denominator 1). In the second case

p 1<—<p+1<xor:1:<p+1<—<p 1
T B Gnt1 b qur
we have
a Prn—1 1
b dn—1 o an—l
and
@ _ Proaf o |Pn_ Pro1f 1
b gn—1 an dn-1 Gndn—1
so that b > ¢,. On the other hand,
’I—Q‘Z DPnt1 @ > 1
b n+1 b bgn+1

so that |bz — a| > 1/¢u1 > |guxr — pp|. This is a contradiction since ¢, < b and

|bx — a| > |gnx — pnl. O



One application of continued fractions is solving the Pell equation, z? — Dy? = %1
(D > 0 squarefree), obtaining fundamental units in real quadratic fields. In particular, if
VD = [ag; a1, -, G, (periodic of period s) and p/q = [a; . . . as_1] then the fundamental
unit is given by

e=p+qVD, D=23(4), D=1(8)

or one of

6:p+Q\/5, 63:p+Q\/5

otherwise.
For example, with D = 7 we have /7 = [2;1,1,1,4] so that s = 2, p/q = [2;1,1,1] =
8/3 and € = 8 + 31/7 is a fundamental unit (i.e. (Z[V/7])* = £€%).

2 Ergodic Theory

A measure-preserving system (X, B, u,T) is a finite measure space (X, B, 1) equipped
with a measureable 7' : X — X that is measure-preserving pu(T~*A) = u(A) for all
A € B. We say the system is ergodic if whenever A € B satisfies A = T A, then
u(A) € {0, u(X)}.

For (immediate) future use, we note that ergodicity is equivalent to
fel? foT = f= fis constant a.e..

Some examples:

1. Consider T, : [0,1) — [0,1),Tyz = = 4+ b mod 1. Then T} preserves lebesgue
measure (Haar measure). If b = p/q is rational, then the system is not ergodic (if
A C(0,1/q) then U]_,(A+1/q) is Ty-invariant). If b is irrational, then T, is ergodic
since if f(z) = >, a,e*™™ is T}, invariant, then f(z) = f(z+b) =Y, a,e*™te?™ne
and a, (€™ — 1) = 0 for all n # 0. Since b is irrational, this is only possible if
a, = 0 for all n # 0.

2. Another example on the interval/circle is Ty : [0,1) — [0,1),Txx = kx, k €
Z\{0,1}. This also preserves lebesgue measure (Haar measure). [In general, if
T : G — G is a continuous endomorphism of a compact group, then T preserves
Haar measure p as follows. Let v be the pushforward of pu by T, v(E) = u(T~'E).
Then

V(ToE) = u(T N (TxE)) = w(aT'E) = w(T7'E) = v(E).
Because T is surjective, v is G-invariant and must be Haar measure, v = u.] Ty
is ergodic since if foT = f with f(z) = > a,e*™ then for all j we have
fz) = f(Kz) = 3, a,e*™™ % Hence a, = a, and letting j — oo (Riemann-
Lebesgue: folf(x)eQWi"xdx — 0) shows that a, = 0 for all n # 0. Thus f is
constant.

3. One more example. Let I be the incidence matrix of a digraph on n vertices,
and suppose P be a stochastic matrix compatible with I (I(i,j) =0 = P(i,j) =



0). Define a measure on the subset X C {1,...,n}" where x = (z;) € X iff
I(x;,x;11) = 1 for all i. Define a measure p on the cylinder sets U(yy,...,yx) =

{fzeX o=y, =y} by p(UWi, - uk) = 7y Py, 92) - P(Yr-1, Yi)
where 7 is a stationary distribution (left eigenvector) for P. Then the left shift

T(xg,z1,29,...) = (x1,22,...) is measure preserving and T is ergodic iff P is
irreducible.

The big theorem we will be using later is the following.

Theorem (Birkhoff Pointwise Ergodic Theorem, 1931). Let (X,B,u,T) be a measure
preserving system. For any integrable f : X — C, the time average

f¥(z) = lim —Zf (T"z)

N—)oo

exists for a.e. x € X. The time average f* is T-mvamant, fre Ll and [ fdu= [ f*du.
If T is ergodic with respect to i, then the time average is constant and equal to the space

average
= 1
fi ZNIEHOONZ f(T"z) = (X)/de“

for a.e. x € X.
As you may imagine, this is a somewhat technical result. We will use the following.

Proposition (Maximal Inequality). Let U : L'(X) — L'(X) be positive (f > 0= Uf >
0) with ||U|| < 1 and let f € L' be real valued. If fo = 0, f,, = Sy Uf forn > 1 and
Fn(xz) = max{f,(x) : 0 <n < N} (pointwise mazimum), then

/ fdp >0
{Fn>0}
for all N

Proof. We have Fy € L', Fy > f, for all n so that UFy > U f,, for all n by positivity.
Hence UFy + f > Uf, + f = f.y1 and therefore

UFy(z) + f(z) > max fu
:1r<na<>§\]fn when Fy(z) >0

= Fy(z).
Thus f > Fy —UFy on A= {Fy > 0} so that

[ 1= [ e~ [ R
A A A
:/FN—/UFNsinceFN:OonX\A
X A

Z/FN—/UFNSiDCGFNZO:>UFNZO
X

> 0 since ||U]| < 1.



Corollary. Let (X,B,u,T) be a measure preserving system and g € L' real-valued. If
A € B is T-invariant, then

/ gdp > ap(Ba N A)
Bo,NA

n—1
1 .
B, = : - g T'z) >
{x iglf{n =0 g( x) Oé}}

Proof. We consider T': A — A and use the above with Uh =hoT =, f = g — a. Then
we have (in the notation above)

where

—_

n— n—1

fulz) = (g(T%) — a) , fo(z) >0 <= %ZQ(TZZ‘) > o

i

Il
o

so that
x € By <=z € {Fy > 0} for some N, ie. B, =Uy{Fy > 0}.

By the maximal inequality, we have

fdu >0, / gdp > ap(Ey).
Ea o

(Proof of the pointwise ergodic theorem). idontwanna

3 Continued Fractions as a Dynamical System

Consider the system

X =[0,1N\Q, T(z) = {é} 1 FJ :

In terms of the continued fraction expansion x = [ay, as, . . .|, we have T'(x) = [ag, a3, .. .],
i.e. T is the shift map on NY. Gauss discovered (somehow) the following T-invariant
probability measure (absolutely continuous w.r.t. lebesgue measure)

1  dx

d = .
Hiw) log21+x




It’s easy to verify that the Gauss measure is shift invariant. We check this on sets of the
form A = (0,a) (which generate the Borel sigma algebra)

T ()

1

_Z/ du _Zlog< W)

n+a

:ZIOg (n+1) —logn —log(n+ a+ 1) + log(n + a)

N+1
=log(1 +a) + lim log ( * )
N—o00

N+a+1

¢ dx
= log(1 = — = (log2)u(A).
og(1+a) T (log2)u(A)
Fun fact:

1 1 1/n 1
/{—}da::Z/ <——n)dx
o (T 1/(n+1) \T

n

N
:hrnlogN—l—l Z

n +
n=1

4 Ergodicity of the Gauss Map

There are various proofs of ergodicity of the Gauss map. Perhaps the most interesting
is viewing the Gauss map as a factor of a cross section of the geodesic flow on the unit
tangent bundle of the modular surface H/PSL(2,Z). Another approach (a dynamical
system on a space of quadratic forms) that may have been available to Gauss is outlined
in Keane. For the sake of time here is a direct approach.

Proposition. The measure preserving system

dz
=[0,1N\Q, T(z) ={1/z}, du= W
15 ergodic.
Proof. Consider the cylinder set
I(ay,...,an) ={z =|a1,...,an,...]}

which is an interval in (0, 1), either

([a1, ... an), a1, ..., an +1]) or ([a1,...,a, + 1], [a1,. .., a,])



depending on whether n is even or odd. We want to show that
2 (T*TLA N [(a’la s 7an>) = /’L(TinA)u([(ala s 7an)) (3)

for all Borel sets A, which will imply (since the sets I(aq, ..., a,) generate the topology
on NV) that u(A N B) < u(A)u(B) for all B and any T-invariant A. Applying this to
B = (0,1)\A gives pu(A) € {0,1} as desired. To this end, we show (3) for intervals
A=1d,e.

Recall that

_ DPn + pnflT'nm
DPn + pn—lT‘na7

T

(4)

so that z € I(ay,...,a,) NT~ ™A if and only if x is as in (4) with 7"z € A = [d, e]. Since
T™ is monotone on I(a. ..., a,), increasing for n even, decreasing for n odd,

PntBPn-1 Dot QPn-1 GnPn-1 = Pndn-1
- = (8 —a)
Qn + ﬁQn—l An + an—1 (Qn + 6‘]71—1)((]71 + O-/Qn—l)
(=1)"

(Qn + 5Qn71)(Qn + OJanl) ’

= (-

I(ay,...,a,) NT ™A is an interval with endpoints

Pn + dpn—l Pn + €Pn—1
Gn +dgn—1’ @+ €Gn_1

and lebesgue measure (as above)

1
(qn + dgn—1)(qn + €qn-1)

The lebesgue measure of I(ay,...,a,) is
& o Pn + Pn—1 _ 1
an Gn + qn—1 Qn(Qn + Qn+1> ’
so that
ohgodidontwanna

5 Applications

Direct application of the ergodic theorem gives information about the continued fraction
expansion of almost every number. Here are some examples.



Proposition. For a.e. x = [a,az,a3,...] € [0,1]\Q we have

1 (k+ 1)
= — = <
Pla, = k) = lim I{az ki <N} = g210g (k(k+2)>,

(1 ~41.56%,2 ~ 16.99%, 3 ~ 9.31%,4 ~ 5.89%, etc.)

N 1/N log k/ log 2
, k+1)2\ 8"
lim H an> =11 <(—> = 2.6854520010...,

R DIELS

n<N
lim S log gy = 77—2
Nooo N 12log 2’
lim llog z— NI G .
N—oco N qan 6log 2

Proof. Applying the ergodic theorem to the indicator f = 1(i/(+1)1/k) gives the fre-
quency /probability that a digit of the continued fraction expansion is given by k:

N—oo N—oo N

1/“’“ o _ 1 <(k ))
log2 Ji 41y L+ log?2 k(k +2)

Applying the ergodic theorem to f(x) = >, (log k)1 (k+1)1/k) We get

CLR™ gy g iai =k
lim Nzof(T ()) = lim ——F——

N
1
= lim — Y 1
o= i D og

1/k
log 2 o J1/(k+1) L+
log k (k+ 1)
- Z log 2 log (k(k + 2))
k
so that, after exponentiating, we get

N /N log k/ log 2
k 1 2 2 2
lim <| |an) =] (%) — 2.6854520010...
—00

n=1 k

(called Khinchin’s constant, it is unknown if this constant is rational).
Applying the ergodic theorem to fy(z) = ZkgM kL1 /(kt1),1/5), We get



my Y e-3%

10g2 /(k+1) 1+33

n<N k<M
an<M
= g klog ( E klog {1+ ——— !
k(k+2) k(k +2)
k<M k<M
> ! L — 00, M — o0
- k+2  k(k+2)? ’ '

With a bit more work we can also obtain results about the rate of convergence
lai,...,a,] — x, namely

1 1 N 7T2 1 1 PN 7T2
—lo — —log|x — — — .
N e 12log2’ N & qN 6log 2
To this end, recall from the first section that
Pn + pn,lT"aj
r=—==
dn + anlTnx
from which it follows that
Tdn—-1 — Pn-1
Hsz = "(Tqn-1 = Pn-1) = |2Gn-1 — Pn-1l,
(_1)n+1 ‘ ’
TGp 1 —Pp1 = —————— |Tqn_ n—
nma = Pt In + gna Tz n-1 = 24

Hence we have

1 .
< |xgn-1 — pn_1| < — from section 1)

1
— < |xqn-1 — pn_1| < — (or recall

2qn qn qn+1 dn
and B
1 M. <L
2q0 35 Gn

Taking logarithms and applying the ergodic theorem gives

o1 iy 1 110g:1:
fn s = Jin 3 5os7) =g [P



the last integral being

I I !
— / 8% jp = g(—l)k“/ 2* log xdx
log2 J, 1+ log2k:0 0
) 1 1
LS (e,
longZ0 E+1 . o k+1

1 Z(_l)m_ (2
k2 2log2 12log?2

since

k odd k even k even k even
oD@ @
4 4 2
Finally, because
1 DPn 1
<z ——| <
Anqn+2 an Gndn+1
(recall
‘x_&zpn-ﬂ_&: (2 > 1
dn qn+2 dn gn+24n Gn+29n
from the first section) we have
1 Pn w2
——log |x — —
qn 6log2
as n — oo. ]

One last result, on the distribution of the normalized error 6,,(z) = ¢,|pn — ¢uz|.

o — bn

Theorem. Let 0,(z) = ¢2 Eel. Then for (lebesgue) almost every x € [0, 1]

Jim {0 0,(2) < 2} = (2)

= 0<z2<1/2
f(Z) = { l—zll-lgOé(Qz)

log 2 —

where

Proof. This uses mixing properties of an extension of the gauss map. See Hensley and
the references there. ]
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