Division Algebras, the Brauer Group, and Galois Cohomology

Robert Hines

January 5, 2015

Introduction

Classifying (or even finding) non-commutative division algebras is a difficult task. Here are two examples:

- (Cyclic algbras) Given a finite cyclic extension K/k with galois group generated by σ and an element $a \in k^{\times}$, define the **cyclic algebra** (K/k, a) as the quotient of the twisted polynomial algebra $K[x]_{\sigma}$ ($bx = x\sigma(b)$ for $b \in K$) by the two-sided ideal generated by $x^n a$. For instance, the quaternions are $\mathbb{C}[x]_{\tau}/(x^2 + 1)$, τ complex conjugation.
- (Crossed product algebras) The previous example can be generalized. Let K/k be a finite galois extension with galois group G, and consider the K vector space $A = \langle x_{\sigma} : \sigma \in G \rangle_{K}$ with multiplication defined by

$$\alpha x_{\sigma} = x_{\sigma} \sigma(\alpha), \ x_{\sigma} x_{\tau} = a_{\sigma,\tau} x_{\sigma\tau}$$

where the $a_{\sigma,\tau} \in K^{\times}$ satisfy (forced by associativity $x_{\rho}(x_{\sigma}x_{\tau}) = (x_{\rho}x_{\sigma})x_{\tau}$)

$$\rho(a_{\sigma,\tau})a_{\rho\sigma,\tau} = a_{\rho,\sigma}a_{\rho\sigma,\tau}.$$

With this multiplication, A becomes a finite dimensional k-central division algebra containing K as a maximal subfield, the **crossed product algebra** (K, G, a). We will see these again when we discuss the relation of the Brauer group to cohomology.

Examples of finite dimensional central division algebras not given as a crossed product were not found until the '70s (by Amitsur).

The Brauer group is a tool for organizing information about all of the finite dimensional division algebras with a given center. As we shall see, the Brauer group can be realized as a cohomology group.

The Brauer Group of a Field

A central simple k-algebra A is a ring with no non-trivial two-sided ideals and center k. For a fixed field k, we define an equivalence relation on the collection of finite dimensional central simple k-algebras, $A \sim B$, if there is a division ring D (a ring such that every non-zero $d \in D$ has an inverse d^{-1} such that $dd^{-1} = d^{-1}d = 1$) and positive integers n, m such that $A \cong M_n(D), B \cong M_m(D)$. Equivalently, $A \sim B$ if there are positive integers m, n such that $A \otimes M_n(k) \cong B \otimes M_m(k)$. We denote the equivalence class of A by [A]. (It is a fact that any finite dimensional central simple k-algebra is isomorphic to a matrix ring over a division ring so that a D as described above exists (a consequence of the Artin-Wedderburn theorem).)

The tensor product of two finite dimensional central simple k-algebras is also a central simple k-algebra, and this can be used to define a product on the set of equivalence classes, $[A] \cdot [B] := [A \otimes B]$, with identity [k] and inverse $[A]^{-1} = [A^{op}]$ $(A \otimes A^{op} \cong M_n(k), n = \dim_k A$, by sending $a \otimes b$ to the matrix of $x \mapsto axb$. With this product, the equivalence classes of central simple k-algebras form an abelian group, the **Brauer Group** Br(k).

Some examples:

- (Wedderburn) $Br(\mathbb{F}_q) = 0$ because any finite division ring is a field.
- $Br(\bar{k}) = 0$ as there are no finite dimensional division algebras D with center an algebraically closed field. (Proof: The action of D on itself by left multiplication is \bar{k} -linear. Considering the minimal polynomial of this linear transformation shows that every element of D is algebraic over \bar{k} .)
- (Frobenius) $Br(\mathbb{R})$ is cyclic of order two, generated by the class of the quaternions \mathbb{H} (we have $\mathbb{H} \otimes \mathbb{H} \cong M_4(\mathbb{R})$).
- $Br(\mathbb{Q}_p) \cong \mathbb{Q}/\mathbb{Z}$ (local class field theory).
- $Br(\mathbb{Q})$ fits into the exact sequence

$$0 \to Br(\mathbb{Q}) \to \bigoplus_{\nu} Br(\mathbb{Q}_{\nu}) \to \mathbb{Q}/\mathbb{Z} \to 0$$

where ν ranges over all completions of \mathbb{Q} (a similar result holds for other number fields).

The Brauer group is functorial in the following sense. Given an extension K/k, extension of scalars gives a homomorphism $Br(k) \to Br(K)$, $[A] \mapsto [A \otimes_k K]$. We define the relative Brauer group, Br(K/k), to be the kernel of this homomorphism, consisting of the (equivalence classes) of finite central simple k-algebras split by K ($A \otimes K \cong M_n(K)$ for some n).

Every finite dimensional central division algebra D/k is split by any maximal subfield of D; furthermore we can find a finite galois extention of k which splits D. Hence we have $Br(k) = \bigcup Br(K/k)$, the union taken over all finite galois extensions K/k. The relative Brauer groups are computable as cohomology groups. We will see that there is an isomorphism, $Br(K/k) \cong H^2(\text{Gal}(K/k), K^{\times})$, for a finite galois extention K/k.

Group Cohomology

Let G be a group, and M a $G\operatorname{\!-module}$ (an abelian group with a $G\operatorname{\!-action}$). We define co-chain groups

$$C^{n}(G,M) := \{f: G^{n} \to M\} \ (C^{0}(G,M) = M),$$

with point-wise addition, G-action given by $(gf)(g_1, ..., g_n) = g \cdot f(g_1, ..., g_n)$, and differential $\delta_n : C^n(G, M) \to C^{n+1}(G, M)$ given by

$$(\delta_n f)(g_1, \dots, g_{n+1}) = g_1 \cdot f(g_2, \dots, g_{n+1}) + \sum_{i=1}^n (-1)^i f(g_1, \dots, g_i g_{i+1}, \dots g_{n+1}) + (-1)^{n+1} f(g_1, \dots, g_n).$$

For n = 0, 1, 2 we have

$$(\delta^0 m) = g \cdot m - m$$

$$(\delta^1 f)(g_1, g_2) = g_1 \cdot f(g_2) - f(g_1 g_2) + f(g_1),$$

$$(\delta^2 f)(g_1, g_2, g_3) = g_1 \cdot f(g_2, g_3) - f(g_1 g_2, g_3) + f(g_1, g_2 g_3) - f(g_1, g_2).$$

The first two cohomology groups are

- $H^0(G, M) = M^G = \{m \in M | g \cdot m = m\}$ $H^0(\operatorname{Gal}(K/k), K^{\times}) = k^{\times}$
- $H^1(G, M) =$ "crossed homomorphisms" / "principal crossed homomorphisms" $H^1(\text{Gal}(K/k), K^{\times}) = 1$ (Hilbert's Satz 90).

Let G = Gal(K/k) and switch to multiplicative notation to analyze $H^2(G, K^{\times})$. The cocycles Z^2 are functions

$$a: G \times G \to K^{\times} \text{ such that } (\delta^2 \mathbf{a})(\rho, \sigma, \tau) = 1 = \rho(\mathbf{a}(\sigma, \tau))\mathbf{a}(\rho\sigma, \tau)^{-1}\mathbf{a}(\rho, \sigma\tau)\mathbf{a}(\rho, \sigma)^{-1},$$

i.e.

$$\rho(a_{\sigma,\tau})a_{\rho\sigma,\tau} = a_{\rho,\sigma}a_{\rho\sigma,\tau}.$$

These were exactly the conditions on the structure constants given for crossed product algebras.

The coboundaries B^2 are given by functions of the form

$$(\delta^1 f)(\sigma, \tau) = \frac{\sigma(f(\tau))f(\sigma)}{f(\sigma\tau)}$$
 where $f: G \to K^{\times}$.

The coboundary condition is the equivalence obtained by considering different bases for a crossed product algebra, as we will now discuss in more detail. First an important theorem:

Theorem (Skolem-Noether). If $f, g : R \to S$ are k-algebra homomorphisms, R simple and S finite central simple, then there is an inner automorphism ϕ of S such that $\phi f = g$. So if $(K, G, a) = \langle x_{\sigma} \rangle_{K} = S = \langle x'_{\sigma} \rangle_{K} = (K, G, b)$ then the fact that

$$x_{\sigma}\alpha x_{\sigma}^{-1} = \sigma(\alpha) = x'_{\sigma}\alpha x'_{\sigma}^{-1}$$

implies that conjugation by $x'_{\sigma}x_{\sigma}^{-1}$ induces the identity on K, hence $x'_{\sigma}x_{\sigma}^{-1} = f_{\sigma} \in K^{\times}$ as K is its own centralizer in S. Multiplying $x'_{\sigma}x'_{\tau} = b_{\sigma,\tau}x'_{\sigma\tau}$ using the above, we get

$$b_{\sigma,\tau} = \frac{\sigma(f_{\tau})f_{\sigma}}{f_{\sigma\tau}}a_{\sigma,\tau}$$

which is the coboundary condition.

Next we'd like to see that every element of the relative Brauer group Br(K/k) (K/k) finite galois) is represented uniquely by a crossed product (K, G, a).

Lemma. Given an extention K/k of degree n, any element of Br(K/k) has a unique representative S of degree n^2 over k, with subfield K satisfying $C_S(K) = K$ (K is its own centralizer in S).

Proof. (Sketch) Let D be the division algebra equivalent to $S, K \otimes D^{op} \cong M_m(K)$, and V the simple $K \otimes D^{op}$ -module. Let $S = M_{[V:D]}(D)$ and check the details ($K \subseteq S$ satisfies $C_S(K) = K$, etc.).

Any S as in the lemma is a crossed product algebra when K/k is galois (take x_{σ} to be the elements satisfying $x_{\sigma}\alpha x_{\sigma}^{-1} = \sigma(\alpha)$ for $\alpha \in K$ which exist by the Skolem-Noether theorem). So far we have a bijection between $H^2(\text{Gal}(K/k), K^{\times})$ and Br(K/k), which is actually a group isomorphism. The proof is a bit lengthy and is omitted.

Theorem. The map $\psi : H^2(G, K^{\times}) \to Br(K/k), a \mapsto [(K, G, a)]$ is a group isomorphism.

We can now apply a a few results from group cohomology to get information about the Brauer group. For instance,

Proposition. The Brauer group Br(k) is torsion.

Proof. For any finite group G and G-module M, we have $|G|H^n(G, M) = 0$ for $n \ge 1$. To see this for n = 2, let f be a 2-cocycle,

$$f(g_1, g_2) = g_1 \cdot f(g_2, g_3) - f(g_1g_2, g_3) + f(g_1, g_2g_3).$$

Summing over g_3 gives

$$|G|f(g_1, g_2) = \sum_{g_3 \in G} g_1 \cdot f(g_2, g_3) - f(g_1g_2, g_3) + f(g_1, g_2g_3) + f(g_1,$$

Let $h(g_2) = \sum_{g_3 \in G} f(g_2, g_3)$ and rewrite the above to get

$$|G|f(g_1, g_2) = g_1 \cdot h(g_2) - h(g_1g_2) + h(g_1) = (\delta^1 h)(g_1, g_2) \in B^2.$$

Since Br(k) is the union of Br(K/k) over finite galois extentions K/k, the Brauer group is torsion.

Proposition. If K/k is a cyclic extention with $G = \text{Gal}(K/k) = \langle \sigma \rangle$ and the norm map $N: K^{\times} \to k^{\times}$ is not surjective, then there is a noncommutative division algebra over k.

Proof. We have a free resolution of $\mathbb{Z}[G]$ given by

 $\dots \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{D} \mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{D} \mathbb{Z}[G] \xrightarrow{\epsilon} \mathbb{Z} \to 0$

where $D = \sigma - 1$ and $N = \sum_i \sigma^i$ is the norm. Applying Hom(_, K^{\times}) and taking cohomology gives $H^2(G, K^{\times}) = k^{\times}/N(K^{\times})$.

For instance, if p is an odd prime and $k = \mathbb{F}_p(x)$, $K = k(\sqrt{x})$, then $x^2 + x$ is not a norm.

That's all I have to say about that.

References

- [1] Farb, Dennis, Noncommutative Algebra, GTM vol. 144, Springer-Verlag, 1993
- [2] Lam, A First Course in Noncommutative Rings (Second Edition), GTM vol. 131, Springer-Verlag, 2001
- [3] Rotman, Advanced Modern Algebra (Second Edition), GSM vol. 114, AMS, 2010
- [4] THE INTERNET