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Introduction

Classifying (or even finding) non-commutative division algebras is a difficult task. Here
are two examples:

• (Cyclic algbras) Given a finite cyclic extension K/k with galois group generated by
σ and an element a ∈ k×, define the cyclic algebra (K/k, a) as the quotient of the
twisted polynomial algebra K[x]σ (bx = xσ(b) for b ∈ K) by the two-sided ideal
generated by xn − a. For instance, the quaternions are C[x]τ/(x

2 + 1), τ complex
conjugation.

• (Crossed product algebras) The previous example can be generalized. Let K/k
be a finite galois extension with galois group G, and consider the K vector space
A = 〈xσ : σ ∈ G〉K with multiplication defined by

αxσ = xσσ(α), xσxτ = aσ,τxστ

where the aσ,τ ∈ K× satisfy (forced by associativity xρ(xσxτ ) = (xρxσ)xτ )

ρ(aσ,τ )aρσ,τ = aρ,σaρσ,τ .

With this multiplication, A becomes a finite dimensional k-central division algebra
containing K as a maximal subfield, the crossed product algebra (K,G, a). We
will see these again when we discuss the relation of the Brauer group to cohomology.

Examples of finite dimensional central division algebras not given as a crossed product
were not found until the ’70s (by Amitsur).

The Brauer group is a tool for organizing information about all of the finite dimen-
sional division algebras with a given center. As we shall see, the Brauer group can be
realized as a cohomology group.

1



The Brauer Group of a Field

A central simple k-algebra A is a ring with no non-trivial two-sided ideals and center k.
For a fixed field k, we define an equivalence relation on the collection of finite dimensional
central simple k-algebras, A ∼ B, if there is a division ring D (a ring such that every
non-zero d ∈ D has an inverse d−1 such that dd−1 = d−1d = 1) and positive integers
n,m such that A ∼= Mn(D), B ∼= Mm(D). Equivalently, A ∼ B if there are positive
integers m,n such that A⊗Mn(k) ∼= B ⊗Mm(k). We denote the equivalence class of A
by [A]. (It is a fact that any finite dimensional central simple k-algebra is isomorphic to
a matrix ring over a division ring so that a D as described above exists (a consequence
of the Artin-Wedderburn theorem).)

The tensor product of two finite dimensional central simple k-algbras is also a central
simple k-algebra, and this can be used to define a product on the set of equivalence
classes, [A] · [B] := [A ⊗ B], with identity [k] and inverse [A]−1 = [Aop] (A ⊗ Aop ∼=
Mn(k), n = dimkA, by sending a ⊗ b to the matrix of x 7→ axb). With this product,
the equivalence classes of central simple k-algebras form an abelian group, the Brauer
Group Br(k).

Some examples:

• (Wedderburn) Br(Fq) = 0 because any finite division ring is a field.

• Br(k̄) = 0 as there are no finite dimensional division algebras D with center an
algebraically closed field. (Proof: The action of D on itself by left multiplication is
k̄-linear. Considering the minimal polynomial of this linear transformation shows
that every element of D is algebraic over k̄.)

• (Frobenius) Br(R) is cyclic of order two, generated by the class of the quaternions
H (we have H⊗H ∼= M4(R)).

• Br(Qp) ∼= Q/Z (local class field theory).

• Br(Q) fits into the exact sequence

0→ Br(Q)→
⊕
ν

Br(Qv)→ Q/Z→ 0

where ν ranges over all completions of Q (a similar result holds for other number
fields).

The Brauer group is functorial in the following sense. Given an extension K/k,
extension of scalars gives a homomorphism Br(k)→ Br(K), [A] 7→ [A⊗kK]. We define
the relative Brauer group, Br(K/k), to be the kernel of this homomorphism, consisting
of the (equivalence classes) of finite central simple k-algebras split by K (A⊗K ∼= Mn(K)
for some n).

Every finite dimensional central division algebra D/k is split by any maximal subfield
of D; furthermore we can find a finite galois extention of k which splits D. Hence we
have Br(k) =

⋃
Br(K/k), the union taken over all finite galois extensions K/k. The

relative Brauer groups are computable as cohomology groups. We will see that there is
an isomorphism, Br(K/k) ∼= H2(Gal(K/k), K×), for a finite galois extention K/k.



Group Cohomology

Let G be a group, and M a G-module (an abelian group with a G-action). We define
co-chain groups

Cn(G,M) := {f : Gn →M} (C0(G,M) = M),

with point-wise addition, G-action given by (gf)(g1, ..., gn) = g · f(g1, ..., gn), and differ-
ential δn : Cn(G,M)→ Cn+1(G,M) given by

(δnf)(g1, ..., gn+1) = g1·f(g2, ..., gn+1)+
n∑
i=1

(−1)if(g1, ..., gigi+1, ...gn+1)+(−1)n+1f(g1, ..., gn).

For n = 0, 1, 2 we have

(δ0m) = g ·m−m
(δ1f)(g1, g2) = g1 · f(g2)− f(g1g2) + f(g1),

(δ2f)(g1, g2, g3) = g1 · f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2).

The first two cohomology groups are

• H0(G,M) = MG = {m ∈M |g ·m = m}
H0(Gal(K/k), K×) = k×

• H1(G,M) = “crossed homomorphisms”/“principal crossed homomorphisms”
H1(Gal(K/k), K×) = 1 (Hilbert’s Satz 90).

Let G = Gal(K/k) and switch to multiplicative notation to analyze H2(G,K×). The
cocycles Z2 are functions

a : G×G→ K× such that (δ2a)(ρ, σ, τ) = 1 = ρ(a(σ, τ))a(ρσ, τ)−1a(ρ, στ)a(ρ, σ)−1,

i.e.
ρ(aσ,τ )aρσ,τ = aρ,σaρσ,τ .

These were exactly the conditions on the structure constants given for crossed product
algebras.

The coboundaries B2 are given by functions of the form

(δ1f)(σ, τ) =
σ(f(τ))f(σ)

f(στ)
where f : G→ K×.

The coboundary condition is the equivalence obtained by considering different bases for
a crossed product algebra, as we will now discuss in more detail. First an important
theorem:

Theorem (Skolem-Noether). If f, g : R → S are k-algebra homomorphisms, R simple
and S finite central simple, then there is an inner automorphism φ of S such that φf = g.



So if (K,G, a) = 〈xσ〉K = S = 〈x′σ〉K = (K,G, b) then the fact that

xσαx
−1
σ = σ(α) = x′σαx

′−1
σ

implies that conjugation by x′σx
−1
σ induces the identity on K, hence x′σx

−1
σ = fσ ∈ K×

as K is its own centralizer in S. Multiplying x′σx
′
τ = bσ,τx

′
στ using the above, we get

bσ,τ =
σ(fτ )fσ
fστ

aσ,τ

which is the coboundary condition.
Next we’d like to see that every element of the relative Brauer group Br(K/k) (K/k

finite galois) is represented uniquely by a crossed product (K,G, a).

Lemma. Given an extention K/k of degree n, any element of Br(K/k) has a unique
representative S of degree n2 over k, with subfield K satisfying CS(K) = K (K is its
own centralizer in S).

Proof. (Sketch) Let D be the division algebra equivalent to S, K ⊗Dop ∼= Mm(K), and
V the simple K⊗Dop-module. Let S = M[V :D](D) and check the details (K ⊆ S satisfies
CS(K) = K, etc.).

Any S as in the lemma is a crossed product algebra when K/k is galois (take xσ to
be the elements satisfying xσαx

−1
σ = σ(α) for α ∈ K which exist by the Skolem-Noether

theorem). So far we have a bijection between H2(Gal(K/k),K×) and Br(K/k), which is
actually a group isomorphism. The proof is a bit lengthy and is omitted.

Theorem. The map ψ : H2(G,K×) → Br(K/k), a 7→ [(K,G, a)] is a group isomor-
phism.

We can now apply a a few results from group cohomology to get information about
the Brauer group. For instance,

Proposition. The Brauer group Br(k) is torsion.

Proof. For any finite group G and G-module M , we have |G|Hn(G,M) = 0 for n ≥ 1.
To see this for n = 2, let f be a 2-cocycle,

f(g1, g2) = g1 · f(g2, g3)− f(g1g2, g3) + f(g1, g2g3).

Summing over g3 gives

|G|f(g1, g2) =
∑
g3∈G

g1 · f(g2, g3)− f(g1g2, g3) + f(g1, g2g3).

Let h(g2) =
∑

g3∈G f(g2, g3) and rewrite the above to get

|G|f(g1, g2) = g1 · h(g2)− h(g1g2) + h(g1) = (δ1h)(g1, g2) ∈ B2.

Since Br(k) is the union of Br(K/k) over finite galois extentions K/k, the Brauer group
is torsion.



Proposition. If K/k is a cyclic extention with G = Gal(K/k) = 〈σ〉 and the norm map
N : K× → k× is not surjective, then there is a noncommutative divsion algebra over k.

Proof. We have a free resolution of Z[G] given by

. . .
N→ Z[G]

D→ Z[G]
N→ Z[G]

D→ Z[G]
ε→ Z→ 0

where D = σ − 1 and N =
∑

i σ
i is the norm. Applying Hom( , K×) and taking

cohomology gives H2(G,K×) = k×/N(K×).

For instance, if p is an odd prime and k = Fp(x), K = k(
√
x), then x2 + x is not a

norm.
That’s all I have to say about that.

References

[1] Farb, Dennis, Noncommutative Algebra, GTM vol. 144, Springer-Verlag, 1993

[2] Lam, A First Course in Noncommutative Rings (Second Edition), GTM vol. 131,
Springer-Verlag, 2001

[3] Rotman, Advanced Modern Algebra (Second Edition), GSM vol. 114, AMS, 2010

[4] THE INTERNET


