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Introduction

Our goal is to show that every C∗-algebra is isometrically ∗-isomorphic to a ∗-subalgebra of
bounded linear operators on some Hilbert space. This is accomplished via the Gelfand-Naimark-
Segal construction ([GN], [S]) which uses a positive linear functional f and the left regular rep-
resentation A→ EndC(A) to produce a cyclic (irreducible if f is a “pure state”) representation
πf : A→ B(H), along with the fact that there are “enough” positive linear functionals. Sources
for the exposition below are [C], [A], and [D].

Preliminaries

A C∗-algebra A is a unital Banach algebra (a complete normed linear space over C with
continuous associative multiplication A × A → A and ‖1‖ = 1) with an map ∗ : A → A
satisfying

(a∗)∗ = a, (αa+ b)∗ = ᾱa∗ + b∗, (ab)∗ = b∗a∗, ‖a∗a‖ = ‖a‖2, α ∈ C, a, b ∈ A.

We will denote by A′ the dual space of A, A′ := L(A,C) (bounded linear functionals).
Examples:

• If X is a compact Hausdorff topological space and A = C(X) is the ring of complex-valued
continuous functions on X, then A is a commutative C∗-algebra with involution f∗ = f̄
(point-wise complex conjugation of function values).

• If H is a Hilbert space, then B(H), the bounded linear endomorphisms of H, is a C∗-
algebra with ∗ the usual adjoint defined by 〈Tx, y〉 = 〈x, T ∗y〉.

A representation of a C∗-algebra is a ∗-homomorphism π : A → B(H). Two representa-
tions π1 : A→ B(H1), π2 : A→ B(H2), are (unitarily) equivalent if there is a unitary operator
U : H1 → H2 such that

Uπ1(a) = π2(a)U, a ∈ A.

A representation π is cyclic if there exists e ∈ H such that {π(a)e : a ∈ A} is dense in H.
A representation is (topologically) irreducible if it has no proper, nontrivial closed invariant
subspaces, i.e. if V ⊆ H is closed and π(A)V ⊆ V , then V ∈ {0,H}. Equivalently (see
Appendix), the commutant of π(A) is C, where the commutant of a collection of operators
S ⊆ B(H) is

{T ∈ B(H) : ST = TS for all S ∈ S}.
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An application of Zorn’s lemma shows that every non-degenerate representation ({π(a)v : a ∈
A, v ∈ H} is dense in H) is equivalent to an orthogonal direct sum of cyclic representations.

We conclude this section by recalling the functional calculus for normal elements of a C∗-
algebra. For commutative C∗-algebras we have the following.

Theorem 1. If A is a commutative C∗-algebra and Σ is the space of maximal ideals of A
(equivalently the collection of homomorphisms A→ C with the weak∗ topology), then the Gelfand
transform

Γ : A→ C(Σ), Γ(a)x = x(a),

is an isometric ∗-isomorphism.

For a commutative C∗-algebra A generated by a normal element a (i.e. a commutes with
its adjoint a∗), we can naturally identify the maximal ideal space Σ with the the spectrum of
a, σ(a) = {λ ∈ C : λ− a 6∈ A×}.

Proposition 1. If A is a commutative C∗-algebra with generator a and maximal ideal space
Σ, then

τ : Σ→ σ(a), τ(x) = x(a),

is a homeomorphism. Moreover, if p(z, z̄) is a polynomial in z and z̄, then

Γ(p(a, a∗)) = p ◦ τ

where Γ is the Gelfand transform.

Recall that if A ⊆ B are C∗-algebras, then σA(a) = σB(a), i.e. the spectrum of an element
does not depend on the algebra. We can now define the functional calculus for normal
elements of a C∗-algebra.

Theorem 2. Let A be a C∗-algebra, a ∈ A normal, and Γ, τ as above. Define ρ : C(σ(a)) →
C∗(a) ⊆ A, where C∗(a) is the ∗-subalgebra generated by a, by the following commutative
diagram

C∗(a)
Γ // C(Σ)

C(σ(a))

ρ

ee

τ∗

::

where Σ ∼= σ(a) is the maximal ideal space of C∗(a). The map ρ : C(σ(a)) → A is the
functional calculus for a, taking functions on σ(a) to elements of A, which we think of as
evaluation as in the previous proposition. The functional calculus ρ : C(σ(a)) → A is an
isometric ∗-homomorphism.

Positive elements and positive functionals

Denote by A+ = {a∗a : a ∈ A} the positive elements of A. Equivalently (see appendix),
a ∈ A+ if and only if a = a∗ and σ(a) ⊆ [0,∞). A linear functional f : A → C is positive if
f(a∗a) ≥ 0, i.e. f(A+) ⊆ R≥0. Here are two examples:

• The continuous linear functionals on C(X), X compact, are the finite complex Borel
measures and µ is positive if

∫
|φ|2dµ ≥ 0 for all φ ∈ C(X), i.e. the positive measures.
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• If a ∈ B(H) and v ∈ H, then
f(a) := 〈av, v〉

is a positive linear functional on B(H) since

f(a∗a) = 〈a∗av, v〉 = 〈av, av〉 = ‖av‖2 ≥ 0.

As a sort of converse to the second example, given a positive functional f : A→ C, we have a
positive semi-definite Hermitian form A×A→ A defined by f(y∗x). A positive linear functional
f is automatically continuous, ‖f‖ = f(1), as follows. By Cauchy-Schwarz we have

|f(x)|2 ≤ f(1)f(x∗x)

so we must show that f(x∗x) ≤ f(1) if ‖x‖ ≤ 1, i.e. f(1 − x∗x) ≥ 0 for ‖x‖ ≤ 1. For any
self-adjoint a with ‖a‖ ≤ 1, an application of the functional calculus shows that 1−a is positive,
σ(1− a) ⊆ [0, 2].

The positive linear functionals of norm one are known as the states of A, denoted by SA.
The states of A form a compact covex subset of A′ in the weak∗ topology; SA is clearly convex
and closed

SA =
⋂
a∈A+

{f ∈ A′ : f(a) ∈ [0,∞)},

hence compact by the Banach-Alaoglu theorem. By Krein-Milman, there are extreme points of
SA, so-called pure states, whose importance will be discussed later. To end this section, we
identify states as the linear functionals satisfying ‖f‖ = f(1) = 1.

Lemma 1 ([A], Corollary to Theorem 1.7.1 or [D], Proposition 2.1.9). If f ∈ A′ satisfies
1 = f(1) = ‖f‖, then f is a state.

Proof. What we will actually show is that for any such f and for any normal element a ∈ A,
f(a) is in the closed convex hull K of σ(a). First note that K is the intersection of all closed
disks containing σ(a) (this is true for any compact convex set in the plane). So if f(a) 6∈ K,
then there is an R > 0 and z0 ∈ C such that σ(a) ⊆ {z : |z − z0| ≤ R} but |f(a)− z0| > R. In
particular the spectral radius of a− z0, r(a− z0), is less or equal R. By the functional calculus,
r(a−z0) = ‖a−z0‖. However, |f(a−z0)| > R gives a contradiction (using ‖f‖ = f(1) = 1).

GNS

The following construction of representations is known as the GNS construction after Gelfand,
Naimark, and Segal ([GN], [S]). The basic idea is to use a positive linear functional to turn a
quotient of the left regular representation of a C∗-algebra into a representation.

Theorem 3 ([C], Theorem VIII.5.14). Given a positive functional f : A→ C, there is a cyclic
representation πf : A→ B(Hf ) with generator e ∈ Hf such that

〈πf (a)e, e〉 = f(a).

If π : A → H is another cyclic representation with generator e′ such that f(a) = 〈π(a)e′, e′〉,
then π and πf are unitarily equivalent.
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Proof. For a positive linear functional f , let N = {a ∈ A : f(a∗a) = 0}. This is clearly a closed
subspace, and in fact is a left ideal: if n ∈ N , a ∈ A, then

f((an)∗(an))2 = f(n∗(a∗an))2 ≤ f(n∗n)f((a∗an)∗(a∗an)) = 0

by Cauchy-Schwarz. Consider the quotient A/N as a vector space, and define the inner product

〈x+N, y +N〉f = f(y∗x).

This is well-defined since if x, y ∈ A, a, b ∈ N , then

f((y + b)∗(x+ a)) = f(y∗x) + f(y∗a) + f(b∗x) + f(b∗a)

and each of the last three terms on the right is zero, e.g.

|f(b∗a)|2 ≤ f(a∗a)f(b∗b) = 0.

Let Hf be the completion of A/N with respect to the norm ‖x + N‖f =
√
〈x+N, x+N〉f .

The left regular representation,

A→ EndC(A), a 7→ La, La(x) = ax,

gives a representation

π : A→ EndC(A/N), a 7→ L̃a, L̃a(x+N) = ax+N,

because N is a left ideal (here we mean ‘representation’ in the purely algebraic sense). We
want to show that π is continuous (with respect to ‖ · ‖f ) and extends to a representation
πf : A→ B(Hf ) of C∗-algebras.

First we show that each π(a) is bounded, ‖π(a)(x+N)‖ ≤ ‖x+N‖f‖a‖. We have ‖π(a)(x+
N)‖2f = f(x∗a∗ax) so we want to show that f(x∗a∗ax) ≤ f(x∗x)‖a‖2. The functional g(b) =
f(x∗bx) is positive, with norm ‖g‖ = g(1) = f(x∗x) so that

f(x∗a∗ax) = g(a∗a) ≤ ‖g‖‖a∗a‖ = f(x∗x)‖a‖2.

Hence π(a) extends to πf (a) ∈ B(Hf ). The homomorphism πf : A → B(Hf ) is clearly contin-
uous, ‖πf‖ ≤ 1. The representation πf is cyclic since πf (A)(1 +N) is dense in Hf .

Now let π : A→ H be another representation with generator e′ ∈ H satisfying

〈π(a)e′, e′〉 = f(a) = 〈πf (a)e, e〉f .

Define U on the dense subspace πf (A)ef ⊆ Hf by Uπf (a)ef = π(a)e′, a well-defined isometry
since

‖π(a)e′‖2 = 〈π(a)e′, π(a)e′〉 = 〈π(a∗a)e′, e′〉 = 〈πf (a∗a)e, e〉 = ‖πf (a)e‖2f .

This extends to all of Hf and satisfies

Uπf (a)πf (b)ef = Uπf (ab)ef = π(ab)e = π(a)π(b)e = π(a)Uπf (b),

so that Uπf (a) = π(a)U and U intertwines πf and π.

4



For a positive linear functional f and a constant α > 0, πf and παf are unitarily equivalent
via

U : Hf → Hαf , Ux = x/
√
α,

so we need only consider the positive functionals of norm one, SA. Among the states, the pure
states correspond to irreducible representations.

Proposition 2 ([A], Theorem 1.6.6). The pure states of A correspond to the irreducible
representations of A, i.e. if π is a cyclic representation with generator e, ‖e‖ = 1, and
f(a) = 〈π(a)e, e〉, then f is pure if and only if π is irreducible.

Proof. Assume f is a pure state, and suppose E 6= 0, 1 is a projection in the commutant of
π(A), with t := ‖Ee‖2 < 1. Define linear functionals gi ∈ A′ as follows

g1(a) =
1

t
〈π(a)e, Ee〉, g2(a) =

1

1− t
〈π(a)e, E⊥e〉,

where E⊥ = 1− E. Clearly f = g1 + g2 and the gi are states since

tg1(a) = 〈π(a)e, Ee〉 = 〈π(a)e, E2e〉 = 〈Eπ(a)e, Ee〉 = 〈π(a)Ee,Ee〉

shows that g1 is positive and g1(1) = ‖Ee‖2/t = 1, so that g1 is a state (by Lemma 1 above).
A similar argument shows that g2 is a state as well. Since f is pure, we have f = g1, i.e.
〈π(a)e, Ee〉 = t〈π(a)e, e〉 for all a ∈ A. Hence E − t = 0 (by density of π(A)e), a contradiction.

Conversely, suppose π is irreducible and that f = tg1 + (1− t)g2 for some g1, g2 ∈ SA. We
will show that g1 = f . Define a (positive semi-definite) sesquilinear form on the dense subspace
π(A)e ⊆ H by

[π(a)e, π(b)e] := tg1(b∗a)

We have
0 ≤ tg1(a∗a) = f(a∗a)− (1− t)g2(a∗a) ≤ f(a∗a)

so that [·, ·] is bounded. By the Riesz lemma, there is some T such that [x, y] = 〈x, Ty〉. T
commutes with π(A) since equality holds below:

tg1((bc)∗a) = 〈π(a)e,Hπ(b)π(c)e〉 ?
= 〈π(a)e, π(b)Hπ(c)e〉 = 〈π(b∗a)e,Hπ(c)e〉 = tg1(c∗b∗a).

Since π is irreducible, H = r · 1 is a scalar and we have

tg1(a) = tg1(1∗a) = 〈π(a)e, re〉 = rf(a), a = 1⇒ t = r,

so that g1 = f . Similarly, g2 = f and f is a pure state.

Existence of faithful representations

We now want to show that the positive linear functionals separate points of A in order to obtain
a faithful representation via an orthogonal direct sum of cyclic representations associated to
positive functionals discussed above.

Proposition 3 ([A], Theorem 1.7.2). For every self-adjoint a ∈ A, there is a state f such that
|f(a)| = ‖a‖. Moreover, f can be taken pure.
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Proof. Let f ∈ C∗(a)′ be a homomorphism at which |Γ(a)| takes its maximum ‖a‖, so that
|f(a)| = ‖a‖. Any such f satisfies f(1) = 1 = ‖f‖. By Hahn-Banach, f extends to a linear
functional on A with ‖f‖ = 1. By Lemma 1, f is a state.

Let F be the collection of states g such thatg(a) = f(a) = ‖a‖ (f and a as above). Then F
is a closed, convex subset of the weak∗ unit ball, hence compact and equal to the closed convex
hull of its extreme points (Banach-Alaoglu and Krein-Milman). Let g be an extreme point of F .
We want to show that g is also an extreme state (pure). If g = tg1 + (1− t)g2, with g1, g2 ∈ SA
and 0 < t < 1, then g1, g2 ∈ F as follows. Since ‖gi‖ = 1, we have |gi(a)| ≤ ‖a‖ = |g(a)| and

‖a‖ = |f(a)| = |g(a)| = |tg1(a) + (1− t)g2(a)| ≤ ‖a‖,

so that gi(a) = g(a) and gi ∈ F . Hence g = gi since g is extreme in F .

Applying the above to a∗a, we get a (pure) state f such that f(a∗a) = ‖a∗a‖ = ‖a‖2.
If πf is the cyclic (irreducible) representation with unit generator e obtained from the GNS
construction, then

‖πf (a)e‖2f = 〈πf (a)e, πf (a)e〉f = 〈πf (a∗a)e, e〉f = f(a∗a) = ‖a‖2,

and ‖πf (a)‖ = ‖a‖.
For each a ∈ A, let fa be a state such that ‖πfa(a)‖ = ‖a‖ as just discussed. Taking an

orthogonal direct sum, we obtain a faithful representation

⊕
a∈A

πfa : A→ B

(⊕
a∈A
Hfa

)
,

achieving our goal. If we take pure states fa, then the right hand side is an orthogonal direct
sum of irreducible representations. Finally, if A is separable we can let a range over a countable
dense subset of A, so that

⊕
a∈AHfa is a separable Hilbert space.

Appendix: Loose ends

For completeness we include the following equivalences, some of which were used above.

Proposition 4 ([D], Proposition 2.3.1). The following are equivalent:

1. The representation π : A→ B(H) is irreducible,

2. Every 0 6= x ∈ H is cyclic for π ({π(a)x : a ∈ A} is dense in H),

3. The commutant of π(A) is C.

Proof. The first and second statements are equivalent since any element of a proper non-trivial
closed invariant subspace won’t be cyclic, and the orbit closure of a a non-zero non-cyclic vector
will define a proper non-trivial closed subspace.

The first and third statements are equivalent since a proper-non-trivial closed subspace
defines a projection 6= 0, 1 that commutes with π(A), and if the commutant is larger than C
it will contain projections that define closed invariant subspaces (e.g. spectral projections of
self-adjoint elements of the commutant, [C] Theorem IX.2.2).

Proposition 5 ([D], Proposition 1.6.1 or [C], Theorem VIII.3.6 or [A] Proposition 1.8.1). The
following are equivalent, and define the positive elements A+ of A:
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1. a = b∗b,

2. a = b2 for some b = b∗,

3. a = a∗ and σ(a) ⊆ [0,∞).

Moreover, the positive elements form a closed cone in A, i.e. A+ is closed and

{αp+ βq : p, q ∈ A+, 0 ≤ α, β ∈ R} ⊆ A+,

with A+ ∩ −A+ = {0}.

Proof. The second and third statements are equivalent by the functional calculus; if σ(a) ⊆
[0,∞), we can take a positive square root (which will be self-adjoint), and if a = b2 with b = b∗,
then σ(a) = σ(b)2 ≥ 0.

Clearly the second statement implies the first, so to finish we show that the first statement
implies the second. First note that there is a decomposition b∗b = u2 − v2 with uv = vu = 0
and u, v self-adjoint, where u = f(b∗b), v = g(b∗b) and

f(t) =

{ √
t t ≥ 0

0 t ≤ 0
, g(t) =

{
0 t ≥ 0√
−t t ≤ 0

(sometimes called the orthogonal decomposition or Hahn decomposition). We want to show
that v = 0. With w = bv we have

w∗w = v∗b∗bv = v∗(u2 − v2)v = −v4,

so that σ(w∗w) =( v2)2 ≤ 0. Now let w = s + it with s, t self-adjoint (in general, any a ∈ A
satisfies a = a+a∗

2 + ia−a
∗

2i ). Then

ww∗ = (s+ it)(s− it) + (s− it)(s+ it)− w∗w = 2s2 + 2t2 + v4 ∈ A+

since A+ is a cone (still to be shown). So σ(ww∗) ≥ 0 and σ(w∗w) ≤ 0. [We now note that
for any a, b ∈ A, the non-zero spectrum of the products, σ(ab) \ {0} and σ(ba) \ {0}, are equal.
This is proved as follows. Suppose λ 6= 0 and (λ− ab)−1 = c. Then

(λ− ba)(1 + bca) = λ− ba+ b(λ− ab)ca = λ,

(1 + bca)(λ− ba) = λ− ba+ bc(λ− ab)a = λ,

and (λ− ba)−1 = 1
λ(1 + bca).] Hence σ(w∗w) = σ(ww∗) = σ(v4) = {0} and we have v = 0 (any

self-adjoint element with zero spectrum must be zero by the functional calculus).
Finally, we need to show that A+ is a cone (obviously closed under any of the definitions

above), for which it suffices to show that if a, b ∈ A+ then a + b ∈ A+, positive scaling
obviously preserving A+. To this end, assume ‖a‖, ‖b‖ ≤ 1. Then σ(1 − a), σ(1 − b) ∈ [0, 1],
‖1− a‖, ‖1− b‖ ≤ 1, ‖1− a+b

2 ‖ ≤ 1, and σ(a+ b) ⊆ [0, 2]. [Here we’ve used the facts that the
spectral radius doesn’t exceed the norm and that the spectral radius of a self-adjoint element
is the norm of the element.]
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[D] Jacques Dixmier, Les C∗-algèbres et leurs Représentations, Gauthier-Villars, 1969.

[GN] I. M. Gelfand, M. A. Naimark, On the imbedding of normed rings into the ring of operators
on a Hilbert space, Matematicheskii Sbornik 12 (2) (1943), 197–217.

[S] I. E. Segal, Irreducible representations of operator algebras, Bull. Amer. Math. Soc. 53 (1)
(1947), 73–88.

8


