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Introduction

Our goal is to show that every C*-algebra is isometrically *-isomorphic to a *-subalgebra of
bounded linear operators on some Hilbert space. This is accomplished via the Gelfand-Naimark-
Segal construction ([GNJ, [S]) which uses a positive linear functional f and the left regular rep-
resentation A — Endc(A) to produce a cyclic (irreducible if f is a “pure state”) representation
7y : A — B(H), along with the fact that there are “enough” positive linear functionals. Sources
for the exposition below are [C], [A], and [D].

Preliminaries

A C*-algebra A is a unital Banach algebra (a complete normed linear space over C with
continuous associative multiplication A x A — A and [[1|| = 1) with an map * : A — A
satisfying

(a*)* = a, (aa +b)* = aa* 4+ b*, (ab)* = b*a*, ||a*al| = ||a|?, a €C, a,b€ A.

We will denote by A’ the dual space of A, A" := L(A,C) (bounded linear functionals).
Examples:

e If X is a compact Hausdorff topological space and A = C'(X) is the ring of complex-valued
continuous functions on X, then A is a commutative C*-algebra with involution f* = f
(point-wise complex conjugation of function values).

e If H is a Hilbert space, then B(H), the bounded linear endomorphisms of H, is a C*-
algebra with * the usual adjoint defined by (T'z,y) = (x, T"*y).

A representation of a C*-algebra is a x-homomorphism 7 : A — B(#). Two representa-
tions m : A — B(H1), ma : A — B(Hz2), are (unitarily) equivalent if there is a unitary operator
U : Hi1 — Ho such that

Uri(a) = ma(a)U, a € A.

A representation 7 is cyclic if there exists e € H such that {m(a)e : a € A} is dense in H.
A representation is (topologically) irreducible if it has no proper, nontrivial closed invariant
subspaces, i.e. if V' C H is closed and 7w(A)V C V, then V € {0,H}. Equivalently (see
Appendix), the commutant of 7(A) is C, where the commutant of a collection of operators
S CB(H) is

{T' e B(H): ST =TS for all S € S}.



An application of Zorn’s lemma shows that every non-degenerate representation ({m(a)v : a €
A,v € H} is dense in H) is equivalent to an orthogonal direct sum of cyclic representations.

We conclude this section by recalling the functional calculus for normal elements of a C*-
algebra. For commutative C*-algebras we have the following.

Theorem 1. If A is a commutative C*-algebra and ¥ is the space of maximal ideals of A
(equivalently the collection of homomorphisms A — C with the weak™ topology), then the Gelfand
transform

' 'A—C%), I'la)z = z(a),

is an isometric *-isomorphism.

For a commutative C*-algebra A generated by a normal element a (i.e. a commutes with
its adjoint a*), we can naturally identify the maximal ideal space ¥ with the the spectrum of

a,o(a) ={AeC: X—a¢g A"}

Proposition 1. If A is a commutative C*-algebra with generator a and maximal ideal space
>, then
T:X —o(a), 7(x) = z(a),

is a homeomorphism. Moreover, if p(z,z) is a polynomial in z and z, then
I'(p(a,a”)) =por
where ' is the Gelfand transform.

Recall that if A C B are C*-algebras, then o4(a) = op(a), i.e. the spectrum of an element
does not depend on the algebra. We can now define the functional calculus for normal
elements of a C*-algebra.

Theorem 2. Let A be a C*-algebra, a € A normal, and I', 7 as above. Define p: C(o(a)) —
C*(a) C A, where C*(a) is the x-subalgebra generated by a, by the following commutative
diagram

where ¥ = o(a) is the mazimal ideal space of C*(a). The map p : C(o(a)) — A is the
functional calculus for a, taking functions on o(a) to elements of A, which we think of as
evaluation as in the previous proposition. The functional calculus p : C(o(a)) — A is an
isometric x-homomorphism.

Positive elements and positive functionals

Denote by Ay = {a*a : a € A} the positive elements of A. Equivalently (see appendix),
a € Ay if and only if a = a* and o(a) C [0,00). A linear functional f : A — C is positive if
f(a*a) >0, ie. f(A+) € R>g. Here are two examples:

e The continuous linear functionals on C'(X), X compact, are the finite complex Borel
measures and f is positive if [ |p|2dp > 0 for all ¢ € C(X), i.e. the positive measures.



o If a € B(H) and v € H, then
F(a) = {av,0)

is a positive linear functional on B(H) since

f(a*a) = (a*av,v) = (av, av) = |lav|?® > 0.

As a sort of converse to the second example, given a positive functional f : A — C, we have a
positive semi-definite Hermitian form Ax A — A defined by f(y*x). A positive linear functional
f is automatically continuous, ||f|| = f(1), as follows. By Cauchy-Schwarz we have

[f(@)? < f()f(z")

so we must show that f(z*z) < f(1) if ||z]| < 1, i.e. f(1 —a*z) > 0 for ||z|| < 1. For any
self-adjoint a with ||a|| < 1, an application of the functional calculus shows that 1 —a is positive,
o(l1—a)C|0,2].

The positive linear functionals of norm one are known as the states of A, denoted by S4.
The states of A form a compact covex subset of A’ in the weak® topology; S4 is clearly convex
and closed

Sa= [ {feA: fla) €[0,00)},

a€A+

hence compact by the Banach-Alaoglu theorem. By Krein-Milman, there are extreme points of
Sa, so-called pure states, whose importance will be discussed later. To end this section, we
identify states as the linear functionals satisfying || f|| = f(1) = 1.

Lemma 1 ([A], Corollary to Theorem 1.7.1 or [D], Proposition 2.1.9). If f € A’ satisfies
1=f()=|fll, then f is a state.

Proof. What we will actually show is that for any such f and for any normal element a € A,
f(a) is in the closed convex hull K of o(a). First note that K is the intersection of all closed
disks containing o(a) (this is true for any compact convex set in the plane). So if f(a) ¢ K,
then there is an R > 0 and 29 € C such that o(a) C {2z : |z — 20| < R} but |f(a) — 20| > R. In
particular the spectral radius of a — zg, r(a — 2g), is less or equal R. By the functional calculus,
r(a—z0) = |la—zo||. However, |f(a—z20)| > R gives a contradiction (using || f|| = f(1) =1). O

GNS

The following construction of representations is known as the GNS construction after Gelfand,
Naimark, and Segal ([GN], [S]). The basic idea is to use a positive linear functional to turn a
quotient of the left regular representation of a C*-algebra into a representation.

Theorem 3 (|C], Theorem VIIL.5.14). Given a positive functional f : A — C, there is a cyclic
representation 7y : A — B(Hy) with generator e € Hy such that

(ms(a)e,e) = f(a).

If m: A — H is another cyclic representation with generator €' such that f(a) = (w(a)e’, €y,
then m and ¢ are unitarily equivalent.



Proof. For a positive linear functional f, let N = {a € A: f(a*a) = 0}. This is clearly a closed
subspace, and in fact is a left ideal: if n € N, a € A, then

f((an)*(an))? = f(n*(a*an))* < f(n*n) f((a*an)*(a*an)) = 0
by Cauchy-Schwarz. Consider the quotient A/N as a vector space, and define the inner product
(x+N,y+ Ny = flya).
This is well-defined since if z,y € A, a,b € N, then
f(ly+0)"(z+a) = fly"x) + f(y"a) + f(b"x) + f(b%a)
and each of the last three terms on the right is zero, e.g.
[f(b*a)[* < f(a*a)f(b"D) = 0.

Let H; be the completion of A/N with respect to the norm |z + N[y = \/(z + N,z + N);.
The left regular representation,

A — Endc(A), a— Ly, Ly(x) = ax,
gives a representation
7:A— Endc(A/N), a— Lq, Ly(z 4+ N) = az + N,

because N is a left ideal (here we mean ‘representation’ in the purely algebraic sense). We
want to show that 7 is continuous (with respect to || - ||f) and extends to a representation
7y A— B(Hy) of C*-algebras.
First we show that each 7(a) is bounded, ||7(a )(x—l—N)H < |lz+N|t|lall. We have ||7(a)(xz+
)Hf = f(z*a*ar) so we want to show that f(z*a*az) < f(z*x)|al|?>. The functional g(b) =
f(x*bx) is positive, with norm ||g|| = g(1) = f(z*z) so that

f(a*a*az) = g(a*a) < |lglllla*all = f(z*z)|al>

Hence 7(a) extends to 7f(a) € B(H). The homomorphism 7¢ : A — B(Hy) is clearly contin-
uous, ||[7¢|| < 1. The representation 7y is cyclic since m¢(A)(1+ N) is dense in Hy.
Now let 7w : A — H be another representation with generator ¢’ € H satisfying

(m(a)e,e') = f(a) = (ms(a)e, )y

Define U on the dense subspace ms(A)ey C Hy by Uns(a)es = m(a)e’, a well-defined isometry
since

Im(a)e'|? = (n(a)e, m(a)e') = (m(a*a)e’,e') = (mp(a*a)e,e) = ||mp(a)el}.
This extends to all of H; and satisfies
Urg(a)my(b)ey = Uny(ab)es = w(ab)e = m(a)m(b)e = m(a)Uns(b),

so that Un¢(a) = 7(a)U and U intertwines 7 and 7. O



For a positive linear functional f and a constant o > 0, 7y and 7, are unitarily equivalent
via
U:Hf— Hap, Uz =z/V/a,
so we need only consider the positive functionals of norm one, S4. Among the states, the pure
states correspond to irreducible representations.

Proposition 2 ([A], Theorem 1.6.6). The pure states of A correspond to the irreducible
representations of A, i.e. if w is a cyclic representation with generator e, |le| = 1, and
fla) = (mw(a)e,e), then f is pure if and only if w is irreducible.

Proof. Assume f is a pure state, and suppose E # 0,1 is a projection in the commutant of
7(A), with ¢ := ||Ee||?> < 1. Define linear functionals g; € A’ as follows

1
gl(a) = ¥<7T(CL)6,E€>, gQ(G) = 17_t<7r(a)67EL€>a
where E+ =1 — E. Clearly f = g1 + go and the g; are states since
tgi(a) = (n(a)e, Be) = (n(a)e, E*e) = (En(a)e, Ee) = (n(a)Ee, Ee)

shows that g1 is positive and g1(1) = || Ee||?/t = 1, so that g; is a state (by Lemma [1| above).
A similar argument shows that go is a state as well. Since f is pure, we have f = ¢, i.e.
(m(a)e, Ee) = t(m(a)e,e) for all a € A. Hence E —t = 0 (by density of m(A)e), a contradiction.

Conversely, suppose 7 is irreducible and that f = tg; + (1 — t)go for some g1, g2 € S4. We
will show that g1 = f. Define a (positive semi-definite) sesquilinear form on the dense subspace
w(A)e C H by

[r(a)e, m(b)e] i= tg(b"a)
We have
0 <tgi(a*a) = f(a"a) — (1 = t)g2(a"a) < f(a"a)

so that [-,-] is bounded. By the Riesz lemma, there is some 7" such that [z,y] = (z,Ty). T
commutes with 7(A) since equality holds below:

tgi1((bc)*a) = (n(a)e, Hr(b)w(c)e) < (m(a)e,m(b)Hm(c)e) = (m(b*a)e, Hm(c)e) = tgi(c*b*a).
Since 7 is irreducible, H = r - 1 is a scalar and we have
tgi(a) =tg1(1%a) = (w(a)e,re) =rf(a), a=1=t=r,

so that g1 = f. Similarly, go = f and f is a pure state. O

Existence of faithful representations

We now want to show that the positive linear functionals separate points of A in order to obtain
a faithful representation via an orthogonal direct sum of cyclic representations associated to
positive functionals discussed above.

Proposition 3 ([A], Theorem 1.7.2). For every self-adjoint a € A, there is a state f such that
|f(a)] = ||a||. Moreover, f can be taken pure.



Proof. Let f € C*(a)’ be a homomorphism at which |I'(a)| takes its maximum |al/, so that
|f(a)] = |la||. Any such f satisfies f(1) = 1 = || f||. By Hahn-Banach, f extends to a linear
functional on A with || f|| = 1. By Lemmal 1] f is a state.

Let F be the collection of states g such thatg(a) = f(a) = ||a|| (f and a as above). Then F
is a closed, convex subset of the weak™ unit ball, hence compact and equal to the closed convex
hull of its extreme points (Banach-Alaoglu and Krein-Milman). Let g be an extreme point of F'.
We want to show that g is also an extreme state (pure). If g = tg1 + (1 —t)g2, with g1, g2 € Sa
and 0 < ¢t < 1, then g1, g2 € F as follows. Since | g;|| = 1, we have |g;(a)| < ||la]| = |g(a)| and

lall = | f(a)] = lg(a)| = [tgi(a) + (1 = t)g2(a)| < [al],
so that g;(a) = g(a) and g; € F. Hence g = g; since g is extreme in F. dJ

Applying the above to a*a, we get a (pure) state f such that f(a*a) = ||a*a| = |a|?
If 74 is the cyclic (irreducible) representation with unit generator e obtained from the GNS
construction, then

Imp(a)ellF = (ms(a)e, mp(a)e); = (mp(a*a)e, e); = f(a*a) = |all?,

and [7s(a)|| = lla]-
For each a € A, let f, be a state such that ||7s,(a)|| = |la|| as just discussed. Taking an
orthogonal direct sum, we obtain a faithful representation

Pr:A—-B (@Hfa> ,

acA a€A

achieving our goal. If we take pure states f,, then the right hand side is an orthogonal direct
sum of irreducible representations. Finally, if A is separable we can let a range over a countable
dense subset of A, so that @, 4, Hy, is a separable Hilbert space.

Appendix: Loose ends

For completeness we include the following equivalences, some of which were used above.
Proposition 4 ([D], Proposition 2.3.1). The following are equivalent:

1. The representation 7 : A — B(H) is irreducible,

2. Every 0 # x € H is cyclic for m ({m(a)x :a € A} is dense in H),

3. The commutant of m(A) is C.

Proof. The first and second statements are equivalent since any element of a proper non-trivial
closed invariant subspace won’t be cyclic, and the orbit closure of a a non-zero non-cyclic vector
will define a proper non-trivial closed subspace.

The first and third statements are equivalent since a proper-non-trivial closed subspace
defines a projection # 0,1 that commutes with m(A4), and if the commutant is larger than C
it will contain projections that define closed invariant subspaces (e.g. spectral projections of
self-adjoint elements of the commutant, [C] Theorem 1X.2.2). O

Proposition 5 (|D], Proposition 1.6.1 or [C], Theorem VIII.3.6 or [A] Proposition 1.8.1). The
following are equivalent, and define the positive elements Ay of A:



1. a =0b*b,
2. a =% for some b= b*,
3. a=a* and o(a) C [0,00).
Moreover, the positive elements form a closed cone in A, i.e. Ay is closed and
{ap+Bq:p,ge Ay, 0<a,B R} C Ay,
with Ay N —A4 = {0}.

Proof. The second and third statements are equivalent by the functional calculus; if o(a) C
[0,00), we can take a positive square root (which will be self-adjoint), and if a = b* with b = b*,
then o(a) = o(b)? > 0.

Clearly the second statement implies the first, so to finish we show that the first statement
implies the second. First note that there is a decomposition b*b = u? — v? with uv = vu = 0
and u, v self-adjoint, where u = f(b*b), v = g(b*b) and

Vi t>0 0 t>0
f<t):{ 0 t<0 ’g(t):{\/ft t<0

(sometimes called the orthogonal decomposition or Hahn decomposition). We want to show
that v = 0. With w = bv we have

w*w = v*b*by = v* (u? — v} = —ov,
so that o(w*w) =( v?)2 < 0. Now let w = s + it with s, t self-adjoint (in general, any a € A

. * . _n*
satisfies a = 452 4 i95%). Then

ww* = (s +it)(s —it) + (s — it)(s + it) —w*w = 28> + 2> v € A,

since Ay is a cone (still to be shown). So o(ww*) > 0 and o(w*w) < 0. [We now note that
for any a,b € A, the non-zero spectrum of the products, o(ab) \ {0} and o(ba) \ {0}, are equal.
This is proved as follows. Suppose A # 0 and (X — ab)~! = ¢. Then

(A —=0ba)(1 4 bca) = X —ba + b(\ — ab)ca = A,
(14 bca)(A —ba) = A —ba + be(A — ab)a = A,

and (A —ba) ™! = $(1+ bca).] Hence o(w*w) = o(ww*) = o(v*) = {0} and we have v = 0 (any
self-adjoint element with zero spectrum must be zero by the functional calculus).

Finally, we need to show that A, is a cone (obviously closed under any of the definitions
above), for which it suffices to show that if a,b € A4 then a + b € A, positive scaling
obviously preserving A;. To this end, assume ||a||,||b|| < 1. Then o(1 —a),o(1 —b) € [0,1],
I1—al,1 -0 <1,]|1- “TH’H <1, and o(a+0b) C [0,2]. [Here we've used the facts that the
spectral radius doesn’t exceed the norm and that the spectral radius of a self-adjoint element
is the norm of the element.] O
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