Taylor polynomial remainder

Suppose f is (n + 1)-times differentiable on the interval between a and a fixed number x. We
want to show that
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where T),(z) is the nth Taylor polynomial for f (centered at a) and the nth remainder R, (x)
is given by the integral
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This explicitly tells us the difference between a function and its Taylor polynomial. Here is a
proof.
The fundamental theorem of calculus tells us that
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Integrating by parts with
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Integrating the remainder R; by parts, with
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= Ty(z) + Ra(x).
Repeatedly integrating by parts n times will give the desired result:
n 1 xX
f@) = f@) + f@ =)+t D s L[ 0 iy
=T(z) + Ry(x).



Taylor’s inequality

Now we want to estimate the size of the remainder, R,. Suppose that for ¢ in the interval
between the center a and the fixed number x we know
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i.e. we can bound the (n + 1)st derivative on the interval between a and z. Then
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This inequality,
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known as Taylor’s inequality, will be useful to us in the sequel.

A non-analytic C*° function

Here is an example of an infinitely differentiable function that cannot be expressed as a power

series near zero: 122
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As you can see, this function is very “flat” at x = 0; in fact we have f(" (0) = 0, every derivative
of f at zero is equal to zero. So the Taylor series for f centered at a = 01is > > ;0 - 2" = 0,
the zero function. In particular, f is not equal to its Taylor series, so f cannot be written as a
power series centered at zero.



Problems

e Give a bound for the remainder R, (x) between sinx and 7, (z) centered at a = 0 (this
will depend on n and x). What happens as n — oo? Do the same for cosx centered at
a=0.

e What is the (n+ 1)st derivative of e*? How big can this be on the interval between a = 0
and z7 (Treat the cases x > 0 and x < 0 separately.) Find the appropriate bound for the
remainder. What happens as n — oo?



e Use the first, second, and third degree Taylor polynomial for /1 + z to estimate v/1.1.
How good is your estimate in each case?



