
Taylor polynomial remainder

Suppose f is (n + 1)-times differentiable on the interval between a and a fixed number x. We
want to show that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)
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= Tn(x) + Rn(x),

where Tn(x) is the nth Taylor polynomial for f (centered at a) and the nth remainder Rn(x)
is given by the integral

Rn(x) = f(x)− Tn(x) =
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This explicitly tells us the difference between a function and its Taylor polynomial. Here is a
proof.

The fundamental theorem of calculus tells us that

f(x)− f(a) =

∫ x
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f ′(t)dt.

Integrating by parts with

u = f ′(t), du = f ′′(t)dt, dv = dt, v = t− x,

gives

f(x)− f(a) = f ′(t)(t− x)
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f(x) = f(a) + f ′(a)(x− a) +
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f ′′(t)(x− t)dt = T1(x) + R1(x).

Integrating the remainder R1 by parts, with

u = f ′′(t), du = f ′′′(t)dt, dv = (x− t)dt, v = −(x− t)2
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So we get

f(x) = f(a) + f ′(a)(x− a) + R1(x) = f(a) + f ′(a)(x− a) +
f ′′(a)
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= T2(x) + R2(x).

Repeatedly integrating by parts n times will give the desired result:
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= Tn(x) + Rn(x).



Taylor’s inequality

Now we want to estimate the size of the remainder, Rn. Suppose that for t in the interval
between the center a and the fixed number x we know

|f (n+1)(t)| ≤M,

i.e. we can bound the (n + 1)st derivative on the interval between a and x. Then
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This inequality,

|f(x)− Tn(x)| = |Rn(x)| ≤ M

(n + 1)!
|x− a|n+1,

known as Taylor’s inequality, will be useful to us in the sequel.

A non-analytic C∞ function

Here is an example of an infinitely differentiable function that cannot be expressed as a power
series near zero:

f(x) =

{
e−1/x

2
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0 if x = 0
.
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As you can see, this function is very “flat” at x = 0; in fact we have f (n)(0) = 0, every derivative
of f at zero is equal to zero. So the Taylor series for f centered at a = 0 is

∑∞
n=0 0 · xn = 0,

the zero function. In particular, f is not equal to its Taylor series, so f cannot be written as a
power series centered at zero.



Problems

• Give a bound for the remainder Rn(x) between sinx and Tn(x) centered at a = 0 (this
will depend on n and x). What happens as n → ∞? Do the same for cosx centered at
a = 0.

• What is the (n+ 1)st derivative of ex? How big can this be on the interval between a = 0
and x? (Treat the cases x ≥ 0 and x ≤ 0 separately.) Find the appropriate bound for the
remainder. What happens as n→∞?



• Use the first, second, and third degree Taylor polynomial for
√

1 + x to estimate
√

1.1.
How good is your estimate in each case?


