Taylor polynomial remainder

Suppose f is (n + 1)-times differentiable on the interval between a and a fixed number x. We want to show that

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^n(a)}{n!}(x-a)^n + \frac{1}{n!}\int_a^x f^{(n+1)}(t)(x-t)^n dt$$

= $T_n(x) + R_n(x)$,

where $T_n(x)$ is the *n*th Taylor polynomial for f (centered at a) and the *n*th remainder $R_n(x)$ is given by the integral

$$R_n(x) = f(x) - T_n(x) = \frac{1}{n!} \int_a^x f^{(n+1)}(t) (x-t)^n dt.$$

This explicitly tells us the difference between a function and its Taylor polynomial. Here is a proof.

The fundamental theorem of calculus tells us that

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt.$$

Integrating by parts with

$$u = f'(t), \ du = f''(t)dt, \ dv = dt, \ v = t - x_{t}$$

gives

$$f(x) - f(a) = f'(t)(t-x)\Big|_{a}^{x} + \int_{a}^{x} (x-t)f''(t)dt = -f'(a)(x-a) + \int_{a}^{x} f''(t)(x-t)dt,$$

$$f(x) = f(a) + f'(a)(x-a) + \int_{a}^{x} f''(t)(x-t)dt = T_{1}(x) + R_{1}(x).$$

Integrating the remainder R_1 by parts, with

$$u = f''(t), \ du = f'''(t)dt, \ dv = (x-t)dt, \ v = -\frac{(x-t)^2}{2},$$

gives

$$R_1(x) = \int_a^x f''(t)(x-t)dt = -f''(t)\frac{(x-t)^2}{2}\Big|_a^x + \frac{1}{2}\int_a^x f'''(t)(x-t)^2dt$$
$$= \frac{f''(a)}{2}(x-a)^2 + \frac{1}{2}\int_a^x f'''(t)(x-t)^2dt.$$

So we get

$$f(x) = f(a) + f'(a)(x - a) + R_1(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \frac{1}{2}\int_a^x f'''(t)(x - t)^2 dt$$

= $T_2(x) + R_2(x)$.

Repeatedly integrating by parts n times will give the desired result:

$$f(x) = f(a) + f'(a)(x-a) + \dots + \frac{f^n(a)}{n!}(x-a)^n + \frac{1}{n!}\int_a^x f^{(n+1)}(t)(x-t)^n dt$$

= $T_n(x) + R_n(x)$.

Taylor's inequality

Now we want to estimate the size of the remainder, R_n . Suppose that for t in the interval between the center a and the fixed number x we know

$$|f^{(n+1)}(t)| \le M,$$

i.e. we can bound the (n + 1)st derivative on the interval between a and x. Then

$$|R_n(x)| = \left| \frac{1}{n!} \int_a^x f^{(n+1)}(t)(x-t)^n dt \right| \le \frac{M}{n!} \left| \int_a^x (x-t)^n dt \right|$$
$$= \frac{M}{n!} \left| \frac{(x-t)^{n+1}}{n+1} \right|_a^x = \frac{M}{n!} \frac{|x-a|^{n+1}}{n+1}$$
$$= \frac{M}{(n+1)!} |x-a|^{n+1}.$$

This inequality,

$$|f(x) - T_n(x)| = |R_n(x)| \le \frac{M}{(n+1)!} |x - a|^{n+1},$$

known as Taylor's inequality, will be useful to us in the sequel.

A non-analytic C^{∞} function

Here is an example of an infinitely differentiable function that cannot be expressed as a power series near zero:

As you can see, this function is very "flat" at x = 0; in fact we have $f^{(n)}(0) = 0$, every derivative of f at zero is equal to zero. So the Taylor series for f centered at a = 0 is $\sum_{n=0}^{\infty} 0 \cdot x^n = 0$, the zero function. In particular, f is not equal to its Taylor series, so f cannot be written as a power series centered at zero.

Problems

• Give a bound for the remainder $R_n(x)$ between $\sin x$ and $T_n(x)$ centered at a = 0 (this will depend on n and x). What happens as $n \to \infty$? Do the same for $\cos x$ centered at a = 0.

• What is the (n+1)st derivative of e^x ? How big can this be on the interval between a = 0 and x? (Treat the cases $x \ge 0$ and $x \le 0$ separately.) Find the appropriate bound for the remainder. What happens as $n \to \infty$?

• Use the first, second, and third degree Taylor polynomial for $\sqrt{1+x}$ to estimate $\sqrt{1.1}$. How good is your estimate in each case?