Taylor polynomial remainder

Suppose f is $(n+1)$-times differentiable on the interval between a and a fixed number x. We want to show that

$$
\begin{aligned}
f(x) & =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{n}(a)}{n!}(x-a)^{n}+\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t \\
& =T_{n}(x)+R_{n}(x)
\end{aligned}
$$

where $T_{n}(x)$ is the nth Taylor polynomial for f (centered at a) and the nth remainder $R_{n}(x)$ is given by the integral

$$
R_{n}(x)=f(x)-T_{n}(x)=\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t
$$

This explicitly tells us the difference between a function and its Taylor polynomial. Here is a proof.

The fundamental theorem of calculus tells us that

$$
f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d t .
$$

Integrating by parts with

$$
u=f^{\prime}(t), d u=f^{\prime \prime}(t) d t, d v=d t, v=t-x
$$

gives

$$
\begin{aligned}
f(x)-f(a) & =\left.f^{\prime}(t)(t-x)\right|_{a} ^{x}+\int_{a}^{x}(x-t) f^{\prime \prime}(t) d t=-f^{\prime}(a)(x-a)+\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t, \\
f(x) & =f(a)+f^{\prime}(a)(x-a)+\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t=T_{1}(x)+R_{1}(x) .
\end{aligned}
$$

Integrating the remainder R_{1} by parts, with

$$
u=f^{\prime \prime}(t), d u=f^{\prime \prime \prime}(t) d t, d v=(x-t) d t, v=-\frac{(x-t)^{2}}{2}
$$

gives

$$
\begin{aligned}
R_{1}(x) & =\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t=-\left.f^{\prime \prime}(t) \frac{(x-t)^{2}}{2}\right|_{a} ^{x}+\frac{1}{2} \int_{a}^{x} f^{\prime \prime \prime}(t)(x-t)^{2} d t \\
& =\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{1}{2} \int_{a}^{x} f^{\prime \prime \prime}(t)(x-t)^{2} d t .
\end{aligned}
$$

So we get

$$
\begin{aligned}
f(x) & =f(a)+f^{\prime}(a)(x-a)+R_{1}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{1}{2} \int_{a}^{x} f^{\prime \prime \prime}(t)(x-t)^{2} d t \\
& =T_{2}(x)+R_{2}(x) .
\end{aligned}
$$

Repeatedly integrating by parts n times will give the desired result:

$$
\begin{aligned}
f(x) & =f(a)+f^{\prime}(a)(x-a)+\ldots+\frac{f^{n}(a)}{n!}(x-a)^{n}+\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t \\
& =T_{n}(x)+R_{n}(x)
\end{aligned}
$$

Taylor's inequality

Now we want to estimate the size of the remainder, R_{n}. Suppose that for t in the interval between the center a and the fixed number x we know

$$
\left|f^{(n+1)}(t)\right| \leq M,
$$

i.e. we can bound the $(n+1)$ st derivative on the interval between a and x. Then

$$
\begin{aligned}
\left|R_{n}(x)\right| & =\left|\frac{1}{n!} \int_{a}^{x} f^{(n+1)}(t)(x-t)^{n} d t\right| \leq \frac{M}{n!}\left|\int_{a}^{x}(x-t)^{n} d t\right| \\
& \left.=\frac{M}{n!}\left|\frac{(x-t)^{n+1}}{n+1}\right|_{a}^{x} \right\rvert\,=\frac{M}{n!} \frac{|x-a|^{n+1}}{n+1} \\
& =\frac{M}{(n+1)!}|x-a|^{n+1} .
\end{aligned}
$$

This inequality,

$$
\left|f(x)-T_{n}(x)\right|=\left|R_{n}(x)\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1},
$$

known as Taylor's inequality, will be useful to us in the sequel.

A non-analytic C^{∞} function

Here is an example of an infinitely differentiable function that cannot be expressed as a power series near zero:

$$
f(x)=\left\{\begin{array}{cl}
e^{-1 / x^{2}} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array} .\right.
$$

As you can see, this function is very "flat" at $x=0$; in fact we have $f^{(n)}(0)=0$, every derivative of f at zero is equal to zero. So the Taylor series for f centered at $a=0$ is $\sum_{n=0}^{\infty} 0 \cdot x^{n}=0$, the zero function. In particular, f is not equal to its Taylor series, so f cannot be written as a power series centered at zero.

Problems

- Give a bound for the remainder $R_{n}(x)$ between $\sin x$ and $T_{n}(x)$ centered at $a=0$ (this will depend on n and x). What happens as $n \rightarrow \infty$? Do the same for $\cos x$ centered at $a=0$.
- What is the $(n+1)$ st derivative of e^{x} ? How big can this be on the interval between $a=0$ and x ? (Treat the cases $x \geq 0$ and $x \leq 0$ separately.) Find the appropriate bound for the remainder. What happens as $n \rightarrow \infty$?
- Use the first, second, and third degree Taylor polynomial for $\sqrt{1+x}$ to estimate $\sqrt{1.1}$. How good is your estimate in each case?

