Sequences

A sequence is a list of (real) numbers,

$$
\left(a_{n}\right)_{n=1}^{\infty}=\left(a_{1}, a_{2}, a_{3}, \ldots\right),
$$

usually indexed by a subset of the natural numbers $0,1,2,3, \ldots$. A sequence converges to a limit L if for any error $\epsilon>0$ there is an index N (depending on ϵ) so that

$$
\left|a_{n}-L\right|<\epsilon \text { whenever } n \geq N .
$$

In other words the terms of the sequence get arbitrarily close to L for n sufficiently large.
A sequence is bounded if there is a bound M such that $\left|a_{n}\right| \leq M$ for any n. A sequence is monotone increasing (decreasing) if $a_{n} \leq a_{n+1}\left(a_{n} \geq a_{n+1}\right)$. Arguably the most important property of the real numbers is the following:

Any bounded monotone sequence converges.
The usual limit laws apply, e.g.

$$
\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}, \lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)
$$

if the limits all exist and f is continuous at $\lim _{n \rightarrow \infty} a_{n}$.
Here are some random examples.

- The sequence

$$
0,1,0,-1,0,1,0,-1, \ldots
$$

is periodic and does not converge. There are various ways for writing a formula for this sequence, such as

$$
\left\{\sin \left(\frac{n \pi}{2}\right)\right\}_{n=0}^{\infty}, a_{n}=\left\{\begin{array}{cc}
0 & n=2 k \text { even } \\
(-1)^{k} & n=2 k+1 \text { odd }
\end{array}\right.
$$

- The sequence defined recursively by

$$
a_{1}=\sqrt{2}, a_{n+1}=\sqrt{2+a_{n}},
$$

converges to 2 . The sequence is increasing by induction since $a_{2}=\sqrt{2+\sqrt{2}} \geq \sqrt{2}=a_{1}$ and

$$
a_{n+1} \geq a_{n} \Leftrightarrow \sqrt{2+a_{n}} \geq \sqrt{2+a_{n-1}} \Leftrightarrow a_{n} \geq a_{n-1}
$$

The sequence is bounded $a_{n}<2$ by induction since

$$
a_{n}<2 \Leftrightarrow 2+a_{n}<4 \Leftrightarrow a_{n+1}=\sqrt{2+a_{n}}<\sqrt{4}=2 .
$$

Hence the limit exists. If the limit is L, we have

$$
L=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \sqrt{2+a_{n}}=\sqrt{2+L}
$$

Solving for L gives $L=2$.

- For any real number t, the sequence $(1+t / n)^{n}$ converges to the number e^{t}.

Determine whether or not the following limits exist and find the limit if it does exist.

1. $\frac{n!}{n^{n}}$
2. $n \sin (1 / n)$
3. $\frac{n 8^{n}}{3^{2 n+1}}$
4. $\frac{\sin \left(n^{2}\right)}{\sqrt{n}}$

Write a formula for the sequences below:
1.

$$
\frac{1}{2}, \frac{3}{5}, \frac{5}{8}, \frac{7}{11}, \frac{9}{14}, \ldots
$$

2.

$$
-\frac{1}{5}, \frac{1}{11},-\frac{1}{29}, \frac{1}{83}, \ldots
$$

3.

$$
\frac{2}{1}, \frac{-8}{1 \cdot 2 \cdot 3}, \frac{32}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}, \frac{-128}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}, \ldots
$$

1. Recall the sequence of Fibonacci numbers

$$
F_{1}=F_{2}=1, F_{n+1}=F_{n}+F_{n-1},(1,1,2,3,5,8,11, \ldots) .
$$

Find $\lim _{n \rightarrow \infty} F_{n+1} / F_{n}$ (assuming it exists).
2. Considering the picture below, show that the sequence

$$
a_{N}=\sum_{n=1}^{N-1} \frac{1}{n}-\int_{1}^{N} \frac{1}{x} d x
$$

is increasing and bounded above by 1 . The sequence therefore converges. (This number is known as Euler's constant γ.)

