\qquad

1. Given a function $f(x)$ that is infinitely differentiable at $x=a$, what is its Taylor series centered at a ?

The Taylor series is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} .
$$

If f can be expressed as a power series near $x=a$, then that power series must be the Taylor series.
2. [Memorization] What are the Taylor series for the following functions (centered at zero)?
(a) $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$
(b) $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$
(c) $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(d) $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$
(e) $\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}$
3. For this problem, let $f(x)=(1+x)^{1 / 3}$
(a) Find $f^{\prime}(x), f^{\prime \prime}(x)$, and $f^{\prime \prime \prime}(x)$.

We have

$$
\begin{aligned}
f^{\prime}(x) & =\left(\frac{1}{3}\right)(1+x)^{-2 / 3} \\
f^{\prime \prime}(x) & =\left(\frac{1}{3}\right)\left(\frac{-2}{3}\right)(1+x)^{-5 / 3} \\
f^{\prime \prime \prime}(x) & =\left(\frac{1}{3}\right)\left(\frac{-2}{3}\right)\left(\frac{-5}{3}\right)(1+x)^{-8 / 3}
\end{aligned}
$$

(b) What is the maximum M of $\left|f^{\prime \prime \prime}(x)\right|$ on the interval $[0,1]$?

The function $\left|f^{\prime \prime \prime}(x)\right|=\frac{10}{27(1+x)^{7 / 3}}$ is decreasing on the interval $[0,1]$ hence attains its maximum at $x=0,\left|f^{\prime \prime \prime}(0)\right|=\frac{10}{27}=M$.
(c) What is $T_{2}(x)$, the second degree Taylor polynomial for f centered at $x=0$?

The second degree Taylor polynomial is

$$
T_{2}(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}=1+\frac{x}{3}-\frac{x^{2}}{9} .
$$

(d) Use $T_{2}(x)$ to estimate $\sqrt[3]{2}$.
$\sqrt[3]{2}=f(1)$ so we estimate using $T_{2}(1)=1+1 / 3-1 / 9=11 / 9$.
(e) Bound the absolute value of the remainder $R_{2}(1)=f(1)-T_{2}(1)=\sqrt[3]{2}-T_{2}(1)$ using Taylor's inequality and the bound M on $\left|f^{\prime \prime \prime}(x)\right|$ you found above.

Taylor's inequality states that

$$
\left|R_{2}(1)\right| \leq \frac{M}{3!}|1-0|^{3}=\frac{5}{81}
$$

so that

$$
\frac{94}{81} \leq \sqrt[3]{2} \leq \frac{104}{81}
$$

