MATH 2300-004 QUIZ 9 Name:

1. Given a function f(z) that is infinitely differentiable at x = a, what is its Taylor series
centered at a?

The Taylor series is
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If f can be expressed as a power series near x = a, then that power series must be the
Taylor series.

2. [Memorization] What are the Taylor series for the following functions (centered at zero)?
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3. For this problem, let f(x) = (1 + z)/3

(a) Find f'(z), f"(x), and f"(z).
We have
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(b) What is the maximum M of |f”(x)| on the interval [0, 1]?

The function |f"(z)| = W is decreasing on the interval [0, 1] hence attains
its maximum at x = 0, |f"(0)| = ;79 — M.

(c) What is T5(x), the second degree Taylor polynomial for f centered at x = 07

The second degree Taylor polynomial is
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(d) Use Ty(x) to estimate /2.

/2 = f(1) so we estimate using T5(1) =1 +1/3 —1/9 = 11/9.

(e) Bound the absolute value of the remainder Ry(1) = f(1) — Ta(1) = v/2 — Ty(1)
using Taylor’s inequality and the bound M on |f"”(z)| you found above.

Taylor’s inequality states that
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