\qquad

1. Given a function $f(x)$ that is infinitely differentiable at $x=a$, what is its Taylor series centered at a ?
2. [Memorization] What are the Taylor series for the following functions (centered at zero)? (a) $\sin x$
(b) $\cos x$
(c) e^{x}
(d) $\frac{1}{1-x}$
(e) $\ln (1+x)$
3. For this problem, let $f(x)=(1+x)^{1 / 3}$
(a) Find $f^{\prime}(x), f^{\prime \prime}(x)$, and $f^{\prime \prime \prime}(x)$.
(b) What is the maximum M of $\left|f^{\prime \prime \prime}(x)\right|$ on the interval $[0,1]$?
(c) What is $T_{2}(x)$, the second degree Taylor polynomial for f centered at $x=0$?
(d) Use $T_{2}(x)$ to estimate $\sqrt[3]{2}$.
(e) Bound the absolute value of the remainder $R_{2}(1)=f(1)-T_{2}(1)=\sqrt[3]{2}-T_{2}(1)$ using Taylor's inequality and the bound M on $\left|f^{\prime \prime \prime}(x)\right|$ you found above.
