MATH 2300-004 QUIZ 6 Name:

1. What is a sequence? What does it mean for a sequence to converge? Give an example of
a convergent sequence and of a divergent sequence.

A sequence (a, ), is an ordered list of real numbers. A sequence converges,

lim a, = L,
n—oo

if there is a real number L to which the a,, are approaching as n increases, i.e. a,
becomes arbitrarily close to L for n sufficiently large.

[More precisely, the sequence a,, converges to L if for any error ¢ > 0 (no matter how
smalll), there is an index N > 0 (possibly very big!) such that |a,, — L| < € when n > N.
In other words, when you go out further than N terms in the sequence, the terms of the
sequence are within the specificed small error around L.]

Here are some convergent sequences and their limits:
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Here are some divergent sequences:
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periodic sequence,
(en)pZo = ((-1)"(n* + 1)) " = (1,-2,5,-10,17,...)

grows in absolute value, alternating in sign.



2. What is a series? What does it mean for a series to converge? Give an example of a
convergent series and of a divergent series.

oo
A series Z an is (a formal expression for) an attempt to add infinitely many numbers

n=0
an, the terms of the series. A series is convergent if the limit of the partial sums
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exists. In other words, we add up finitely many terms (in order) from a given sequence
an and see if the partial sums approach a limiting value.

Here are some convergent series:
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a convergent geometric series, r = 1/2, |r| < 1.
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a convergent p-series, p = 2 > 1. [The fact that the sum is 72/6 is a non-trivial fact we
won'’t show in class.]

Here are some divergent series:
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E 2", a divergent geometric series, r =2, |r| > 1,
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3. Use the integral test to determine the convergence or divergence of the series
oo
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The function f(z) = x(Tlx)Z’ is positive and decreasing on the interval [2, 00) (positive

because x and (Inz)? are positive there, decreasing because the numerator is fixed and
the denominator is increasing). The series therefore behaves like the improper integral
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The improper integral converges, therefore the series converges as well.

4. Use the comparison test to determine the convergence or divergence of the series
oo
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We can use either the direct comparison test or the limit comparison test, in both cases
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comparing to the convergent geometric series 2(3 /5)".
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For the direct comparison test, we have
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so the series in the problem statement is dominated by the convergent geometric series
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For the limit comparison test, we have
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e.g. using L’Hopital’s rule a few times. Therefore the series in the problem statement
has the same convergence behavior as the convergent geometric series >, (3/5)".



