\qquad

Collaborators (if any):
Due Friday, February 22nd at the beginning of class. Submit your work on additional paper, treating this page as a cover sheet. You may use technology and work with with other students. If you work with others, please list their names above. SHOW YOUR WORK!

1. Do exercise 21 , section 6.6 of the text.

We are lifting disks of water to the top of the tank. The weight of each disk is $62.5 \pi r^{2} d x$ lbs (weight density times volume). Measuring distance $x \mathrm{ft}$ from the top of the tank gives

$$
\text { Work }=\int \text { Force } \times \text { Distance }=\int_{0}^{8}\left(62.5 \pi r^{2} d x\right)(x) .
$$

We can write the radius of a disk $x \mathrm{ft}$ from the top in terms of x using similar triangles (draw a picture)

$$
\frac{3}{8}=\frac{r-3}{8-x}, r=6-\frac{3}{8} x .
$$

Hence

$$
W=62.5 \pi \int_{0}^{8} x(6-3 x / 8)^{2} d x=33000 \pi=103672.557 \mathrm{ft}-\mathrm{lbs}
$$

2. Find the centroid of the region bounded by the given curves.
(a) $y=\cos x, y=\sin x, \pi / 4 \leq x \leq 3 \pi / 4$.

The total area is:

$$
M=\int_{\pi / 4}^{3 \pi / 4}(\sin x-\cos x) d x=-\cos x-\left.\sin x\right|_{\pi / 4} ^{3 \pi / 4}=\sqrt{2} .
$$

The moment about the y-axis is (with density $\rho=1$)

$$
M_{y}=\int_{\pi / 4}^{3 \pi / 4} x(\sin x-\cos x) d x=\sin x-x \cos x-x \sin x-\left.\cos x\right|_{\pi / 4} ^{3 \pi / 4}=\frac{4+\pi}{2 \sqrt{2}}
$$

(using integration by parts). The moment about the x-axis is:

$$
M_{x}=\int_{\pi / 4}^{3 \pi / 4} \frac{\sin ^{2} x-\cos ^{2} x}{2} d x=-\left.\frac{\sin (2 x)}{4}\right|_{\pi / 4} ^{3 \pi / 4}=\frac{1}{2}
$$

(integrating with the identity $\cos ^{2} x-\sin ^{2} x=\cos (2 x)$ or otherwise). Hence the centroid is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{M}, \frac{M_{x}}{M}\right)=\left(1+\frac{\pi}{4}, \frac{1}{2 \sqrt{2}}\right) .
$$

(b) $y=1 / x^{3}, y=0,1 \leq x<\infty$.

The total area is:

$$
M=\int_{1}^{\infty} \frac{1}{x^{3}} d x=-\left.\frac{1}{2 x^{2}}\right|_{1} ^{\infty}=\frac{1}{2} .
$$

The moment about the y-axis is (with density $\rho=1$)

$$
M_{y}=\int_{1}^{\infty} x \frac{1}{x^{3}} d x=-\left.\frac{1}{x}\right|_{1} ^{\infty}=1 .
$$

The moment about the x-axis is:

$$
M_{x}=\int_{1}^{\infty} \frac{1}{2}\left(\frac{1}{x^{3}}\right)^{2} d x=-\left.\frac{1}{10} x^{-5}\right|_{1} ^{\infty}=\frac{1}{10} .
$$

Hence the centroid is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{M}, \frac{M_{x}}{M}\right)=\left(2, \frac{1}{5}\right) .
$$

3. Determine whether the sequence converges or diverges. If it converges, find its limit.
(a) $a_{n}=\frac{e^{n}+e^{-n}}{e^{2 n}-1}$

Intuition: The denominator grows exponentially like $\left(e^{2}\right)^{n}$ while the numerator grows exponentially like e^{n}. Hence the quotient decays exponentially like $(1 / e)^{n}$ and should go to zero as $n \rightarrow \infty$. To make this more rigorous, divide the numerator and denominator by $e^{2 n}$ to get

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{e^{-n}+e^{-3 n}}{1-e^{-2 n}}=\frac{0+0}{1+0}=0
$$

(b) $b_{n}=\ln \left(2 n^{2}+1\right)-\ln \left(n^{2}+1\right)$

Combing the logarithms and dividing the numerator and denominator of the argument by n^{2} gives

$$
b_{n}=\ln \left(\frac{2 n^{2}+1}{n^{2}+1}\right)=\ln \left(\frac{2+1 / n^{2}}{1+1 / n^{2}}\right) .
$$

Hence

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \ln \left(\frac{2+1 / n^{2}}{1+1 / n^{2}}\right)=\ln \left(\lim _{n \rightarrow \infty} \frac{2+1 / n^{2}}{1+1 / n^{2}}\right)=\ln \left(\frac{2+0}{1+0}\right)=\ln 2 .
$$

(c) $c_{n}=\sqrt[n]{2^{n}+3^{n}}$

Intuition: 2^{n} is inconsequential when compared to 3^{n}, so the sequence behaves like $\left(3^{n}\right)^{1 / n}=3$. To make this rigorous, we factor out 3^{n} and take logarithms

$$
\ln \left(c_{n}\right)=\frac{1}{n} \ln \left(3^{n}\left(1+(2 / 3)^{n}\right)\right)=\ln 3+\frac{1}{n} \ln \left(1+(2 / 3)^{n}\right) \rightarrow \ln 3+0=\ln 3 .
$$

Hence $\lim _{n \rightarrow \infty} c_{n}=e^{\ln 3}=3$.
Another approach is to "squeeze" the terms of the sequence,

$$
3=\left(3^{n}\right)^{1 / n} \leq\left(2^{n}+3^{n}\right)^{1 / n} \leq\left(3^{n}+3^{n}\right)^{1 / n}=2^{1 / n} 3
$$

As $n \rightarrow \infty, 2^{1 / n} \rightarrow 1$ (take logarithms if you're not convinced). Hence

$$
3=\lim _{n \rightarrow \infty} 3 \leq \lim _{n \rightarrow \infty}\left(2^{n}+3^{n}\right)^{1 / n} \leq 3 \lim _{n \rightarrow \infty} 2^{1 / n}=3
$$

(d) $d_{n}=\frac{\sin (n) \ln n}{n}$

Intuition: $\sin n$ is bounded by 1 and $\ln n$ grows much more slowly than n, so the sequence should converge to zero. To make this rigorous, we note that

$$
\left|d_{n}\right| \leq \frac{\ln n}{n}
$$

and that

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}=" \frac{\infty}{\infty} "=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0
$$

using L'Hôpital's rule. Hence

$$
0=-\lim _{n \rightarrow \infty} \frac{\ln n}{n} \leq \lim _{n \rightarrow \infty} d_{n} \leq \lim _{n \rightarrow \infty} \frac{\ln n}{n}=0
$$

and the limit is zero as expected.
(e) $e_{n}=\left(1+\frac{t}{n}\right)^{n}$, where t is a constant.

This sequence converges to e^{t} (and you should know this, perhaps taking it for a definition of e^{t}). Taking logarithms gives

$$
\lim _{n \rightarrow \infty} \ln e_{n}=\lim _{n \rightarrow \infty} n \ln (1+t / n)=\lim _{n \rightarrow \infty} \frac{\ln (1+t / n)}{1 / n}=" \frac{0}{0} ",
$$

an indeterminant form. We use L'Hôpital's rule

$$
\lim _{x \rightarrow \infty} \frac{\ln (1+t / x)}{1 / x}=\lim _{x \rightarrow \infty} \frac{\left(-t / x^{2}\right) /(1+t / x)}{-1 / x^{2}}=\lim _{x \rightarrow \infty} \frac{t}{1+t / x}=t,
$$

to conclude that

$$
\lim _{n \rightarrow \infty} e_{n}=e^{t}
$$

4. Show the following:
(a) For any $\epsilon>0, \lim _{x \rightarrow \infty} \frac{\ln x}{x^{\epsilon}}=0$. I.e., $\ln x$ grows more slowly than any power of x.

The limit is indeterminant, ∞ / ∞. Applying L'Hôpital's rule gives

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{\epsilon}}=\lim _{x \rightarrow \infty} \frac{1 / x}{\epsilon x^{\epsilon-1}}=\lim _{x \rightarrow \infty} \frac{1}{\epsilon x^{\epsilon}}=0 .
$$

(b) For any $p>0, \lim _{x \rightarrow \infty} \frac{x^{p}}{e^{x}}=0$. I.e., e^{x} (or a^{x} for any $a>1$) grows more quickly than any power of x.

Let n be the integer such that $n-1<p \leq n$. Applying L'Hôpital's rule n times gives

$$
\lim _{x \rightarrow \infty} \frac{x^{p}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{p(p-1) \cdot \ldots \cdot(p-n+1) x^{p-n}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{p(p-1) \cdot \ldots \cdot(p-n+1)}{x^{n-p} e^{x}}=0
$$

since $n-p \geq 0$.
Another approach is to take p th roots first:

$$
\lim _{x \rightarrow \infty}\left(\frac{x^{p}}{e^{x}}\right)^{1 / p}=\lim _{x \rightarrow \infty} \frac{x}{e^{x / p}} \stackrel{L^{\prime} H}{=} \lim _{x \rightarrow \infty} \frac{1}{e^{x / p} / p}=0
$$

So

$$
\lim _{x \rightarrow \infty} \frac{x^{p}}{e^{x}}=0^{p}=0, p>0
$$

