
MATH 2300-004 QUIZ 5 Name:

Collaborators (if any):

Due Friday, February 22nd at the beginning of class. Submit your work on additional paper,
treating this page as a cover sheet. You may use technology and work with with other
students. If you work with others, please list their names above. SHOW YOUR WORK!

1. Do exercise 21, section 6.6 of the text.

We are lifting disks of water to the top of the tank. The weight of each disk is 62.5πr2dx
lbs (weight density times volume). Measuring distance x ft from the top of the tank gives

Work =

∫
Force×Distance =

∫ 8

0
(62.5πr2dx)(x).

We can write the radius of a disk x ft from the top in terms of x using similar triangles
(draw a picture)

3

8
=
r − 3

8− x
, r = 6− 3

8
x.

Hence

W = 62.5π

∫ 8

0
x(6− 3x/8)2dx = 33000π = 103672.557 ft-lbs.

2. Find the centroid of the region bounded by the given curves.

(a) y = cosx, y = sinx, π/4 ≤ x ≤ 3π/4.

The total area is:

M =

∫ 3π/4

π/4
(sinx− cosx)dx = − cosx− sinx

∣∣∣3π/4
π/4

=
√

2.

The moment about the y-axis is (with density ρ = 1)

My =

∫ 3π/4

π/4
x(sinx− cosx)dx = sinx− x cosx− x sinx− cosx

∣∣∣3π/4
π/4

=
4 + π

2
√

2
,

(using integration by parts). The moment about the x-axis is:

Mx =

∫ 3π/4

π/4

sin2 x− cos2 x

2
dx = −sin(2x)

4

∣∣∣3π/4
π/4

=
1

2
,

(integrating with the identity cos2 x− sin2 x = cos(2x) or otherwise). Hence the
centroid is

(x̄, ȳ) =

(
My

M
,
Mx

M

)
=

(
1 +

π

4
,

1

2
√

2

)
.

(b) y = 1/x3, y = 0, 1 ≤ x <∞.
The total area is:

M =

∫ ∞
1

1

x3
dx = − 1

2x2

∣∣∣∞
1

=
1

2
.



The moment about the y-axis is (with density ρ = 1)

My =

∫ ∞
1

x
1

x3
dx = −1

x

∣∣∣∞
1

= 1.

The moment about the x-axis is:

Mx =

∫ ∞
1

1

2

(
1

x3

)2

dx = − 1

10
x−5

∣∣∣∞
1

=
1

10
.

Hence the centroid is

(x̄, ȳ) =

(
My

M
,
Mx

M

)
=

(
2,

1

5

)
.

3. Determine whether the sequence converges or diverges. If it converges, find its limit.

(a) an =
en + e−n

e2n − 1

Intuition: The denominator grows exponentially like (e2)n while the numerator
grows exponentially like en. Hence the quotient decays exponentially like (1/e)n

and should go to zero as n→∞. To make this more rigorous, divide the numerator
and denominator by e2n to get

lim
n→∞

an = lim
n→∞

e−n + e−3n

1− e−2n
=

0 + 0

1 + 0
= 0.

(b) bn = ln(2n2 + 1)− ln(n2 + 1)

Combing the logarithms and dividing the numerator and denominator of the
argument by n2 gives

bn = ln

(
2n2 + 1

n2 + 1

)
= ln

(
2 + 1/n2

1 + 1/n2

)
.

Hence

lim
n→∞

bn = lim
n→∞

ln

(
2 + 1/n2

1 + 1/n2

)
= ln

(
lim
n→∞

2 + 1/n2

1 + 1/n2

)
= ln

(
2 + 0

1 + 0

)
= ln 2.

(c) cn = n
√

2n + 3n

Intuition: 2n is inconsequential when compared to 3n, so the sequence behaves like
(3n)1/n = 3. To make this rigorous, we factor out 3n and take logarithms

ln(cn) =
1

n
ln(3n(1 + (2/3)n)) = ln 3 +

1

n
ln(1 + (2/3)n)→ ln 3 + 0 = ln 3.

Hence lim
n→∞

cn = eln 3 = 3.

Another approach is to “squeeze” the terms of the sequence,

3 = (3n)1/n ≤ (2n + 3n)1/n ≤ (3n + 3n)1/n = 21/n3.

As n→∞, 21/n → 1 (take logarithms if you’re not convinced). Hence

3 = lim
n→∞

3 ≤ lim
n→∞

(2n + 3n)1/n ≤ 3 lim
n→∞

21/n = 3.



(d) dn =
sin(n) lnn

n

Intuition: sinn is bounded by 1 and lnn grows much more slowly than n, so the
sequence should converge to zero. To make this rigorous, we note that

|dn| ≤
lnn

n

and that

lim
x→∞

lnx

x
= “
∞
∞

” = lim
x→∞

1/x

1
= 0

using L’Hôpital’s rule. Hence

0 = − lim
n→∞

lnn

n
≤ lim

n→∞
dn ≤ lim

n→∞

lnn

n
= 0

and the limit is zero as expected.

(e) en =

(
1 +

t

n

)n
, where t is a constant.

This sequence converges to et (and you should know this, perhaps taking it for a
definition of et). Taking logarithms gives

lim
n→∞

ln en = lim
n→∞

n ln(1 + t/n) = lim
n→∞

ln(1 + t/n)

1/n
= “

0

0
”,

an indeterminant form. We use L’Hôpital’s rule

lim
x→∞

ln(1 + t/x)

1/x
= lim

x→∞

(−t/x2)/(1 + t/x)

−1/x2
= lim

x→∞

t

1 + t/x
= t,

to conclude that
lim
n→∞

en = et.

4. Show the following:

(a) For any ε > 0, lim
x→∞

lnx

xε
= 0. I.e., lnx grows more slowly than any power of x.

The limit is indeterminant, ∞/∞. Applying L’Hôpital’s rule gives

lim
x→∞

lnx

xε
= lim

x→∞

1/x

εxε−1
= lim

x→∞

1

εxε
= 0.

(b) For any p > 0, lim
x→∞

xp

ex
= 0. I.e., ex (or ax for any a > 1) grows more quickly than

any power of x.

Let n be the integer such that n− 1 < p ≤ n. Applying L’Hôpital’s rule n times
gives

lim
x→∞

xp

ex
= lim

x→∞

p(p− 1) · . . . · (p− n+ 1)xp−n

ex
= lim

x→∞

p(p− 1) · . . . · (p− n+ 1)

xn−pex
= 0



since n− p ≥ 0.

Another approach is to take pth roots first:

lim
x→∞

(
xp

ex

)1/p

= lim
x→∞

x

ex/p
L′H
= lim

x→∞

1

ex/p/p
= 0.

So

lim
x→∞

xp

ex
= 0p = 0, p > 0.


