\qquad

Collaborators (if any):
Due Friday, February 22th at the beginning of class. Submit your work on additional paper, treating this page as a cover sheet. You may use technology and work with with other students. If you work with others, please list their names above. SHOW YOUR WORK!

1. Do exercise 21 , section 6.6 of the text.
2. Find the centroid of the region bounded by the given curves.
(a) $y=\cos x, y=\sin x, \pi / 4 \leq x \leq 3 \pi / 4$.
(b) $y=1 / x^{3}, y=0,1 \leq x<\infty$.
3. Determine whether the sequence converges or diverges. If it converges, find its limit.
(a) $a_{n}=\frac{e^{n}+e^{-n}}{e^{2 n}-1}$
(b) $b_{n}=\ln \left(2 n^{2}+1\right)-\ln \left(n^{2}+1\right)$
(c) $c_{n}=\sqrt[n]{2^{n}+3^{n}}$
(d) $d_{n}=\frac{\sin (n) \ln n}{n}$
(e) $e_{n}=\left(1+\frac{t}{n}\right)^{n}$, where t is a constant.
4. Show the following:
(a) For any $\epsilon>0, \lim _{x \rightarrow \infty} \frac{\ln x}{x^{\epsilon}}=0$, (i.e., $\ln x$ grows more slowly than any power of x).
(b) For any $p>0, \lim _{x \rightarrow \infty} \frac{x^{p}}{e^{x}}=0$, (i.e., e^{x} grows more quickly than any power of x).
