[Quiz 4, Due Monday, February 11th] Name:

1. Integrate:
(a) $\int \frac{y^{2}}{\left(1-y^{2}\right)^{3 / 2}} d y$

With $y=\sin \theta, d y=\cos \theta d \theta$ the integral becomes

$$
\begin{aligned}
& \int \frac{\sin ^{2} \theta \cos \theta d \theta}{\left(1-\sin ^{2} \theta\right)^{3 / 2}}=\int \tan ^{2} \theta d \theta=\int\left(\sec ^{2} \theta-1\right) d \theta=\theta-\tan \theta \\
& =\arcsin y-\tan (\arcsin y)=\arcsin y-\frac{y}{\sqrt{1-y^{2}}}
\end{aligned}
$$

(b) $\int_{0}^{\pi / 3} \sec ^{3} \theta \tan \theta d \theta$

With $u=\sec \theta, d u=\sec \theta \tan \theta d \theta$ the integral becomes

$$
\int_{1}^{2} u^{2} d u=u^{3} /\left.3\right|_{1} ^{2}=7 / 3
$$

(c) $\int \frac{x^{2}+8 x+18}{(x+3)^{3}} d x$

First find the partial fraction decomposition of the integrand:

$$
\begin{gathered}
\frac{x^{2}+8 x+18}{(x+3)^{3}}=\frac{A}{x+3}+\frac{B}{(x+3)^{2}}+\frac{C}{(x+3)^{3}}, \\
x^{2}+8 x+18=A(x+3)^{2}+B(x+3)+C=A x^{2}+(6 A+B) x+(9 A+3 B+C), \\
\text { (compare coefficients and solve) } A=1, B=2, C=3 .
\end{gathered}
$$

Next, integrate:

$$
\int\left(\frac{1}{x+3}+\frac{2}{(x+3)^{2}}+\frac{3}{(x+3)^{3}}\right) d x=\ln |x+3|-\frac{2}{x+3}-\frac{3 / 2}{(x+3)^{2}} .
$$

One could also set $u=x+3, x=u-3$, simplify, and integrate.
(d) $\int \ln (\sin t) \sin t \cos t d t$

With $x=\sin t, d x=\cos t d t$, the integral becomes $\int x \ln x d x$ which we integrate by parts,

$$
\begin{gathered}
u=\ln x, d v=x d x, d u=d x / x, v=x^{2} / 2, \\
\int x \ln x d x=\frac{x^{2} \ln x}{2}-\int \frac{x}{2} d x=\frac{x^{2} \ln x}{2}-\frac{x^{2}}{4} \\
=\frac{x^{2}}{2}\left(\ln x-\frac{1}{2}\right)=\frac{\sin ^{2} t}{2}\left(\ln (\sin t)-\frac{1}{2}\right) .
\end{gathered}
$$

2. Let R be the unbounded region in the fourth quadrant between the curves

$$
x=0, y=0, y=\ln x
$$

Find the volume of the solid obtained by rotating R around
(a) the x-axis,
(b) the y-axis.

Note that these are both improper integrals!
For part (a), cross-sections perpendicular to the x-axis being disks of radius $y=|\ln x|$, the volume is

$$
\int_{0}^{1} \pi(\ln x)^{2} d x
$$

The indefinite integral to compute is (using parts once or twice)

$$
\int(\ln x)^{2} d x=x(\ln x)^{2}-2 \int \ln x d x=x(\ln x)^{2}-2(x \ln x-x) .
$$

For the improper integral (improper $\operatorname{since} \ln x$ is unbounded near $x=0$) we take a limit

$$
\int_{0}^{1} \pi(\ln x)^{2} d x=\left.\pi \lim _{\epsilon \rightarrow 0^{+}}\left(x(\ln x)^{2}-2(x \ln x-x)\right)\right|_{\epsilon} ^{1}=\pi \lim _{\epsilon \rightarrow 0^{+}}\left(2-\epsilon(\ln \epsilon)^{2}+2 \epsilon \ln \epsilon-2 \epsilon\right) .
$$

We can find the limits of the two "interesting" summands with L'Hôpital's rule

$$
\lim _{x \rightarrow 0^{+}} x(\ln x)^{2}=\lim _{x \rightarrow 0^{+}} \frac{(\ln x)^{2}}{1 / x} \stackrel{L^{\prime} H}{=}-2 \lim _{x \rightarrow 0^{+}} x \ln x=-2 \lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x} \stackrel{L^{\prime} H}{=} 2 \lim _{x \rightarrow 0^{+}} x=0
$$

Hence the volume is 2π.
For part (b), cross-sections perpendicular to the y-axis being disks of radius $x=e^{y}$, the volume is

$$
\int_{-\infty}^{0} \pi\left(e^{y}\right)^{2} d y
$$

For the improper integral we take a limit

$$
\begin{aligned}
\int_{-\infty}^{0} \pi\left(e^{y}\right)^{2} d y & =\pi \lim _{T \rightarrow-\infty} \int_{T}^{0} e^{2 y} d y=\left.\pi \lim _{T \rightarrow-\infty} \frac{e^{2 y}}{2}\right|_{T} ^{0} \\
& =\pi \lim _{T \rightarrow-\infty} \frac{1}{2}-\frac{e^{2 T}}{2}=\frac{\pi}{2}
\end{aligned}
$$

since $e^{2 T} \rightarrow 0$ as $T \rightarrow-\infty$.

