[Quiz 3, Friday February 1st] Name:

Find $\int \frac{d x}{x^{3}-1}$ (use partial fractions).
The denominator of the integrand factors as $x^{3}-1=(x-1)\left(x^{2}+x+1\right)$. We want to solve

$$
\frac{1}{x^{3}-1}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+x+1} .
$$

Clear denominators, expand,

$$
1=A\left(x^{2}+x+1\right)+(B x+C)(x-1)=(A+B) x^{2}+(A-B+C) x+(A-C),
$$

and equate coefficients to get the system of linear equations

$$
\begin{aligned}
A+B & =0 \\
A-B+C & =0 \\
A-C & =1 .
\end{aligned}
$$

The solution is $A=1 / 3, B=-1 / 3$, and $C=-2 / 3$.
So we are integrating

$$
\int \frac{d x}{x^{3}-1}=\frac{1}{3} \int \frac{d x}{x-1}-\frac{1}{3} \int \frac{x+2}{x^{2}+x+1} d x .
$$

The first integral is straightforward,

$$
\int \frac{d x}{x-1}=\ln |x-1|
$$

For the second integral, complete the square in denominator, $x^{2}+x+1=(x+1 / 2)^{2}+3 / 4$, and make a substitution $u=x+1 / 2$:

$$
\int \frac{x+2}{x^{2}+x+1} d x=\int \frac{x+2}{(x+1 / 2)^{2}+3 / 4} d x=\int \frac{u+3 / 2}{u^{2}+(\sqrt{3} / 2)^{2}} d u .
$$

This gives (with $v=u^{2}+3 / 4$)

$$
\int \frac{u+3 / 2}{u^{2}+(\sqrt{3} / 2)^{2}} d u=\frac{1}{2} \int \frac{d v}{v}+\frac{3}{2} \int \frac{d u}{u^{2}+(\sqrt{3} / 2)^{2}} .
$$

The first integral is again straightforward

$$
\int \frac{d v}{v}=\ln |v|=\ln \left|u^{2}+3 / 4\right|=\ln \left|x^{2}+x+1\right| .
$$

The second integral requires knowing

$$
\int \frac{d t}{t^{2}+a^{2}}=\frac{1}{a} \arctan (t / a)
$$

so that

$$
\int \frac{d u}{u^{2}+(\sqrt{3} / 2)^{2}}=\frac{2}{\sqrt{3}} \arctan \left(\frac{u}{\sqrt{3} / 2}\right)=\frac{2}{\sqrt{3}} \arctan \left(\frac{2 x+1}{\sqrt{3}}\right) .
$$

Putting everything together gives

$$
\int \frac{d x}{x^{3}-1}=\frac{1}{3} \ln |x-1|-\frac{1}{6} \ln \left|x^{2}+x+1\right|-\frac{1}{\sqrt{3}} \arctan \left(\frac{2 x+1}{\sqrt{3}}\right) .
$$

