[Quiz 2, Friday January 25th] Name:

Find the following integrals:

1. $\int_0^1 \frac{x^3}{\sqrt{1-x^2}} dx$ (using a substitution, u=?, du=?)

Let $u = 1 - x^2$, du = -2xdx, so that $x^3dx = x^2(xdx) = (1 - u)\frac{du}{2}$. We get (note the change in the limits of integration)

$$\int_0^1 \frac{x^3}{\sqrt{1-x^2}} dx = \int_1^0 \frac{(1-u)\frac{du}{-2}}{\sqrt{u}} = -\frac{1}{2} \int_1^0 (u^{-1/2} - u^{1/2}) du = -\frac{1}{2} \left(2u^{1/2} - \frac{2}{3}u^{3/2} \right) \Big|_1^0 = \frac{2}{3}.$$

2. $\int_0^1 \frac{x^3}{\sqrt{1-x^2}} dx$ (using an inverse trigonometric substitution, x=?, dx=?)

Letting $x = \sin \theta$, $dx = \cos \theta \ d\theta$, we get

$$\int_0^1 \frac{x^3}{\sqrt{1-x^2}} dx = \int_0^{\pi/2} \frac{\sin^3 \theta}{\sqrt{1-\sin^2 \theta}} \cos \theta \ d\theta = \int_0^{\pi/2} \frac{\sin^3 \theta}{\cos \theta} \cos \theta \ d\theta = \int_0^{\pi/2} \sin^3 \theta \ d\theta.$$

To integrate $\sin^3 \theta$ we use the Pythagorean identity and a substitution, $u = \cos \theta$, $du = -\sin \theta \ d\theta$ to get

$$\int_0^{\pi/2} \sin^3 \theta \ d\theta = \int_0^{\pi/2} (1 - \cos^2 \theta) \sin \theta \ d\theta = -\int_1^0 (1 - u^2) du = -u + u^3/3 \Big|_1^0 = 2/3.$$

If we had been doing an indefinite integral, we would need to convert $u^3/3 - u$ back to x:

$$u^{3}/3 - u = \frac{1}{3}\cos^{3}\theta - \cos\theta = \frac{1}{3}\cos^{3}(\arcsin x) - \cos(\arcsin x)$$
$$= \frac{1}{3}(1 - x^{2})^{3/2} - (1 - x^{2})^{1/2} = -\frac{1}{3}(1 - x^{2})^{1/2}(x^{2} + 2).$$

(Draw a triangle to see that $\cos(\arcsin x) = \sqrt{1 - x^2}$).

3. $\int \frac{\ln y}{y^4} dy$

Integrate by parts with

$$u = \ln y$$
, $dv = y^{-4}dy$, $du = \frac{dy}{y}$, $v = -\frac{1}{3y^3}$

to get

$$\int \frac{\ln y}{u^4} dy = -\frac{\ln y}{3u^3} - \int -\frac{dy}{3u^4} = -\frac{\ln y}{3u^3} + \frac{1}{3} \int y^{-4} dy = -\frac{\ln y}{3u^3} - \frac{1}{9u^3} = -\frac{1}{3u^3} (\ln y + 1/3).$$

4. $\int \cos^2(\omega t)dt \ (\omega \neq 0 \text{ constant})$

Using the identity $\cos^2 x = \frac{1+\cos(2x)}{2}$, we have

$$\int \cos^2(\omega t)dt = \int \frac{1 + \cos(2\omega t)}{2}dt = \frac{t}{2} + \frac{\sin(2\omega t)}{4\omega}.$$