MATH 2300-004 QUIZ 11 [take-home portion] Name: \qquad
The following variation on the logistic equation models logistic growth with constant harvesting:

$$
\frac{d P}{d t}=k P(1-P / M)-c .
$$

For this problem consider the specific instance

$$
\frac{d P}{d t}=0.08 P(1-P / 1000)-15
$$

modeling fish population in a pond where 15 fish per week are caught (time t in weeks).

1. What are the equilibrium solutions to the differential equation in part (i.e. what are the constant solutions)?
2. Find the general solution of the differential equation. [Integrate using partial fractions. You should get something equivalent to $P(t)=\frac{750-250 C e^{-t / 25}}{1-C e^{-t / 25}}$ where C is an arbitrary constant.]
3. Find and interpret the solutions with initial conditions $P(0)=200,300$.
