Arclength, area, and slope in polar coordinates

Briefly, polar coordinates describe points in the Cartesian plane based on their distance from
the origin and the angle they make with the positive z-axis:

r? =22 + 92, tan(d) = y/x < x =rcosh, y = rsiné.

Given a polar curve r = r(6), a < 6 < b we can calculate its length using the same method as
for a parametric curve. We have

(z,y) = (rcosf,rsinf)

so that
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For the area between the origin and a polar curve, we need to know the area of a sector of a
circle,
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as this is our basic unit of area (like a rectangle in Cartesian coordinates). We approximate
the radius as constant on short angle intervals [6;_1,6;], add up the area of the small sectors
we obtain, and take a limit as the mesh of the partition goes to zero:
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We can also talk about the slope dy/dz of polar curves, once again treating them as parametric
curves (z(0),y(0)):
dy dy/d 4(rsing) Zsind+rcosf

dr — dx/d) 4(rcosf) drcosf—rsing

In the problems below, the arclength integrals are not feasible (except for the cardioid), so
just express the arclength as a definite integral.
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Sketch r = 1+ 2sin# (limagon), find the length of the curve, the area between the loops, and
the tangent lines through the origin.
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Sketch r = 3sin(20), find the length of the curve, the area it encloses, and the tangent line at
0 = m/4. Find the area inside the curve but outside the circle r = 3/2.
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