Arclength, area, and slope in polar coordinates

Briefly, polar coordinates describe points in the Cartesian plane based on their distance from the origin and the angle they make with the positive x-axis:

$$
r^{2}=x^{2}+y^{2}, \tan (\theta)=y / x \Longleftrightarrow x=r \cos \theta, y=r \sin \theta
$$

Given a polar curve $r=r(\theta), a \leq \theta \leq b$ we can calculate its length using the same method as for a parametric curve. We have

$$
(x, y)=(r \cos \theta, r \sin \theta)
$$

so that

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{(d x / d \theta)^{2}+(d y / d \theta)^{2}} d \theta=\int_{a}^{b} \sqrt{\left(\frac{d}{d \theta}(r \cos \theta)\right)^{2}+\left(\frac{d}{d \theta}(r \sin \theta)\right)^{2}} d \theta=\ldots \\
& =\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta
\end{aligned}
$$

For the area between the origin and a polar curve, we need to know the area of a sector of a circle,

$$
A_{\theta}=\frac{\theta}{2 \pi} \pi r^{2}=\frac{1}{2} r^{2} \theta,
$$

as this is our basic unit of area (like a rectangle in Cartesian coordinates). We approximate the radius as constant on short angle intervals $\left[\theta_{i-1}, \theta_{i}\right]$, add up the area of the small sectors we obtain, and take a limit as the mesh of the partition goes to zero:

$$
\int_{a}^{b} \frac{1}{2} r^{2} d \theta=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2} r\left(\theta_{i}^{*}\right) \Delta \theta_{i}
$$

We can also talk about the slope $d y / d x$ of polar curves, once again treating them as parametric curves $(x(\theta), y(\theta))$:

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\frac{d}{d \theta}(r \sin \theta)}{\frac{d}{d \theta}(r \cos \theta)}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta} .
$$

In the problems below, the arclength integrals are not feasible (except for the cardioid), so just express the arclength as a definite integral.

Sketch $r=1+\sin \theta$ (cardioid), find the length of the curve, and find the area it encloses.

Sketch $r=1+2 \sin \theta$ (limaçon), find the length of the curve, the area between the loops, and the tangent lines through the origin.

Sketch $r=3 \sin (2 \theta)$, find the length of the curve, the area it encloses, and the tangent line at $\theta=\pi / 4$. Find the area inside the curve but outside the circle $r=3 / 2$.

Sketch $r=3 \cos (3 \theta)$, find the length of the curve, the area it encloses, and the tangent line at $\theta=2 \pi / 3$.

Find the area inside the circle $r=3 \sin \theta$ but outside the cardioid $r=1+\sin \theta$.

