## Basics

Here are some facts/tools for dealing with polynomials and rational functions (a quotient of polynomials).

- Every polynomial with real coefficients can be factored over the real numbers into a product of linear $(a x+b)$ and irreducible quadratic $\left(a x^{2}+b x+c, b^{2}-4 a c<0\right)$ factors, e.g.

$$
3 x^{5}+2 x^{4}+6 x^{3}+4 x^{2}+3 x+2=(3 x+2)\left(x^{2}+1\right)^{2} .
$$

- You can divide two polynomials $\frac{a(x)}{b(x)}=q(x)+\frac{r(x)}{b(x)}$ to get a quotient $q(x)$ and remainder $r(x)$ with the degree of $r(x)$ less than the degree of $b(x)$, e.g.

$$
\frac{2 x^{4}+4 x^{3}-x^{2}-10 x+3}{x^{3}-3 x+1}=2 x+4+\frac{5 x^{2}-1}{x^{3}-3 x+1} .
$$

- A quadratic polynomial $a x^{2}+b x+c$ can be put in "standard form" (completing the square) as follows

$$
a x^{2}+b x+c=a\left(x+\frac{b}{2 a}\right)^{2}+c-\frac{b^{2}}{4 a}
$$

e.g.

$$
x^{2}+5 x+3=(x+5 / 2)^{2}+3-\frac{25}{4} .
$$

## Partial fraction decomposition of rational functions

The idea of the partial fraction decomposition is to write a rational function as a sum of rational functions with "simpler" denominators, e.g.

$$
\begin{aligned}
& \frac{5 x^{7}+6 x^{6}+13 x^{5}+12 x^{4}+9 x^{3}+5 x^{2}-5 x-5}{x^{6}+2 x^{5}+3 x^{4}+4 x^{3}+3 x^{2}+2 x+1}=5 x-4+\frac{6 x^{5}+4 x^{4}+10 x^{3}+7 x^{2}-2 x-1}{(x+1)^{2}\left(x^{2}+1\right)^{2}} \\
& =5 x-4+\frac{3}{x+1}+\frac{2 x+1}{(x+1)^{2}}+\frac{x-2}{x^{2}+1}+\frac{2 x-3}{\left(x^{2}+1\right)^{2}} .
\end{aligned}
$$

The point, for us, is that the simpler pieces are easy/easier to integrate.
Here are a couple of examples.

- (two distinct linear factors). To decompose

$$
\frac{5 x-16}{x^{2}-7 x+10}
$$

we factor the denominator $x^{2}-7 x+10=(x-2)(x-5)$ and try to solve the following for $A$ and $B$

$$
\frac{5 x-16}{(x-2)(x-5)}=\frac{A}{x-2}+\frac{B}{(x-5)} .
$$

Clearing denominators and combining like terms gives

$$
5 x-16=A(x-5)+B(x-2)=(A+B) x+(-5 A-2 B) .
$$

Equating coefficients of powers of $x$ gives the system of linear equations

$$
\begin{aligned}
A+B & =5 \\
-5 A-2 B & =-16 .
\end{aligned}
$$

There are various ways of solving linear systems (solve for one of the variables in the first equation and substitute into the second, add a multiple of one equation to the other to eliminate one of the variables, etc.). In any case we get

$$
A=2, B=3,
$$

so that

$$
\frac{5 x-16}{x^{2}-7 x+10}=\frac{2}{x-2}+\frac{3}{(x-5)} .
$$

- (repeated linear factor). To decompose

$$
\frac{4 x+3}{x^{2}+2 x+1}=\frac{4 x+3}{(x+1)^{2}},
$$

we try solving for $A, B$, and $C$ in the following (note the two terms, one for each power of the repeated linear factor)

$$
\frac{4 x+3}{(x+1)^{2}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}
$$

Clearing denominators and combining like terms gives

$$
4 x+3=A(x+1)+B=A x+(A+B) .
$$

Equating powers of $x$ gives a system of linear equations

$$
\begin{aligned}
A & =4 \\
A+B & =3,
\end{aligned}
$$

which gives

$$
A=4, B=-1,
$$

and

$$
\frac{4 x+3}{x^{2}+2 x+1}=\frac{4}{x+1}+\frac{-3}{(x+1)^{2}} .
$$

- (a linear and quadratic factor). To decompose

$$
\frac{5 x^{2}+3 x+1}{x^{3}+2 x^{2}+x+2}=\frac{5 x^{2}+3 x+1}{(x+2)\left(x^{2}+1\right)}
$$

we solve the following for $A, B$, and $C$ (note the linear term $B x+C$ for the irreducible quadratic factor)

$$
\frac{5 x^{2}+3 x+1}{(x+2)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1} .
$$

Clearing denominators and combining like terms gives

$$
5 x^{2}+3 x+1=A\left(x^{2}+1\right)+(B x+C)(x+2)=(A+B) x^{2}+(2 B+C) x+(A+2 C) .
$$

Equating coefficients of powers of $x$ gives a linear system

$$
\begin{aligned}
A+B & =5 \\
2 B+C & =3 \\
A+2 C & =1,
\end{aligned}
$$

with solution

$$
A=3, B=2, C=-1 .
$$

Hence

$$
\frac{5 x^{2}+3 x+1}{x^{3}+2 x^{2}+x+2}=\frac{3}{x+1}+\frac{2 x-1}{x^{2}+1} .
$$

- (repeated quadratic factors). For a repeated quadratic factor, you will need linear numerators $A_{i} x+B_{i}$ for each power of the repeated factor. For example, to decompose

$$
\frac{4 x^{5}+3 x^{4}+16 x^{3}+12 x^{2}+16 x+13}{\left(x^{2}+2\right)^{3}}
$$

we need to solve

$$
\frac{x^{5}+x^{4}+7 x^{3}+6 x^{2}+10 x+9}{\left(x^{2}+2\right)^{3}}=\frac{A_{1} x+B_{1}}{x^{2}+2}+\frac{A_{2} x+B_{2}}{\left(x^{2}+2\right)^{2}}+\frac{A_{3} x+B_{3}}{\left(x^{2}+2\right)^{3}},
$$

which gives a linear system

$$
\begin{aligned}
A_{1} & =1 \\
B_{1} & =1 \\
4 A_{1}+A_{2} & =7 \\
4 B_{1}+B_{2} & =6 \\
4 A_{1}+2 A_{2}+A_{3} & =10 \\
4 B_{1}+2 B_{2}+B_{1} & =9,
\end{aligned}
$$

with solution

$$
A_{1}=1, B_{1}=1, A_{2}=3, B_{2}=2, A_{3}=0, B_{3}=1 .
$$

## Integrating the simple pieces

After completing the square and pulling out constants, you will only have to integrate the following to integrate ANY RATIONAL FUNCTION:

$$
\begin{gathered}
\int \frac{d x}{x+a} d x=\ln |x+a|, \\
\int \frac{d x}{(x+a)^{n}}=\frac{1}{(1-n)(x+a)^{n-1}}, n>1, \\
\int \frac{x}{\left(x^{2}+a^{2}\right)^{n}} d x=\frac{1}{2} \int \frac{d u}{u^{n}} \\
\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan (x / a),
\end{gathered}
$$

and finally (only with some repeated quadratic factors, so don't worry about memorizing this)

$$
\int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}=\frac{2 x}{4 a^{2}(n-1)\left(x^{2}+a^{2}\right)^{n-1}}+\frac{2(2 n-3)}{4 a^{2}(n-1)} \int \frac{d x}{\left(x^{2}+a^{2}\right)^{n-1}} .
$$

## Problems

1. $\int \frac{x^{2}-x+5}{x^{2}+x-6} d x$

After dividing and factoring the denominator, the integrand is

$$
\frac{x^{2}-x+5}{x^{2}+x-6}=1+\frac{-2 x+11}{x^{2}+x-6}=1+\frac{-2 x+11}{(x+3)(x-2)}
$$

so we want the partial fraction decomposition of $\frac{-2 x+11}{(x+3)(x-2)}$, i.e. we want to solve

$$
\frac{-2 x+11}{(x+3)(x-2)}=\frac{A}{x+3}+\frac{B}{x-2} .
$$

Clearing denominators and combining like terms gives

$$
-2 x+11=A(x-2)+B(x+3)=(A+B) x-2 A+3 B .
$$

Equating coefficients of powers of $x$ gives a system of linear equations

$$
\begin{aligned}
-2 & =A+B \\
11 & =-2 A+3 B,
\end{aligned}
$$

with solution

$$
A=-17 / 5, B=7 / 5
$$

Hence the integral is

$$
\int d x-\frac{17}{5} \int \frac{d x}{x+3}+\frac{7}{5} \int \frac{d x}{x-2}=x-\frac{17}{5} \ln |x+3|+\frac{7}{5} \ln |x-2| .
$$

2. $\int \frac{y^{2}+3}{y^{3}-3 y^{2}+3 y-1} d y$

The integrand is

$$
\frac{y^{2}+3}{y^{3}-3 y^{2}+3 y-1}=\frac{y^{2}+3}{(y-1)^{3}}=\frac{A}{y-1}+\frac{B}{(y-1)^{2}}+\frac{C}{(y-1)^{3}} .
$$

Clearing denominators gives

$$
\begin{aligned}
y^{2}+3 & =A(y-1)^{2}+B(y-1)+C \\
& =A y^{2}+(B-2 A) y+A-B+C,
\end{aligned}
$$

and we must solve the system of linear equations

$$
\begin{aligned}
A & =1 \\
B-2 A & =0 \\
A-B+C & =3,
\end{aligned}
$$

to get

$$
A=1, B=2, C=4
$$

Hence the integral is

$$
\int \frac{d y}{y-1}+\int \frac{2 d y}{(y-1)^{2}}+\int \frac{4 d y}{(y-1)^{3}}=\ln |y-1|-2(y-1)^{-1}-2(y-1)^{-2} .
$$

3. $\int \frac{d w}{w^{2}-2 w+10}$

Completing the square, the denominator is $(w-1)^{2}+9$ and the integral is

$$
\frac{1}{3} \arctan \left(\frac{x-1}{3}\right) .
$$

4. $\int \frac{d x}{x^{3}+1}$

The integrand is

$$
\frac{1}{1+x^{3}}=\frac{A}{x+1}+\frac{B x+C}{x^{2}-x+1},
$$

which leads to

$$
1=(A+B) x^{2}+(-A+B+C) x+(A+C),
$$

with solution

$$
A=\frac{1}{3}, B=-\frac{1}{3}, C=\frac{2}{3} .
$$

Hence the integral becomes

$$
\frac{1}{3} \int\left(\frac{1}{x+1}+\frac{-x+2}{x^{2}-x+1}\right) d x=\frac{1}{3} \ln |x+1|+\frac{1}{3} \int \frac{-x+2}{x^{2}-x+1} d x .
$$

For the remaining integral, we complete the square and make a substitution to get

$$
\begin{aligned}
\int \frac{-x+2}{(x-1 / 2)^{2}+3 / 4} d x & =\int \frac{-u+3 / 2}{u^{2}+3 / 4} d u \\
& =-\int \frac{u}{u^{2}+3 / 4} d u+\frac{3}{2} \int \frac{d u}{u^{2}+3 / 4} \\
& =-\frac{1}{2} \int \frac{d v}{v}+\frac{3}{2} \frac{2}{\sqrt{3}} \arctan (2 u / \sqrt{3}) \\
& =-\frac{1}{2} \ln \left|u^{2}+3 / 4\right|+\sqrt{3} \arctan ((2 x-1) / \sqrt{3}) \\
& =-\frac{1}{2} \ln \left|(x-1 / 2)^{2}+3 / 4\right|+\sqrt{3} \arctan ((2 x-1) / \sqrt{3})
\end{aligned}
$$

(where $u=x-1 / 2, v=u^{2}+3 / 4$ above). Hence our final result is

$$
\int \frac{d x}{x^{3}+1}=\frac{1}{3} \ln |x+1|-\frac{1}{6} \ln \left|x^{2}-x+1\right|+\frac{1}{\sqrt{3}} \arctan ((2 x-1) / \sqrt{3}) .
$$

5. $\int \frac{-z^{3}-26 z^{2}-28 z-120}{z^{4}-16} d z$

The integrand is

$$
\frac{-z^{3}-26 z^{2}-28 z-120}{z^{4}-16}=\frac{-z^{3}-26 z^{2}-28 z-120}{\left(z^{2}+4\right)(z+2)(z-2)}=\frac{A z+B}{z^{2}+4}+\frac{C}{z+2}+\frac{D}{z-2}
$$

We must solve

$$
\begin{aligned}
& -z^{3}-26 z^{2}-28 z-120=(A z+B)(z+2)(z-2)+C(z-2)\left(z^{2}+4\right)+D(z+2)\left(z^{2}+4\right) \\
& =(A+C+D) z^{3}+(B-2 C+2 D) z^{2}+(-4 A+4 C+4 D) z+(-4 B-8 C+8 D)
\end{aligned}
$$

More compactly, we can reduce

$$
\left(\begin{array}{ccccc}
1 & 0 & 1 & 1 & -1 \\
0 & 1 & -2 & 2 & -26 \\
-4 & 0 & 4 & 4 & -28 \\
0 & -4 & -8 & 8 & -120
\end{array}\right) \sim\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & 5 \\
0 & 0 & 0 & 1 & -9
\end{array}\right)
$$

to get $A=3, B=2, C=5, D=-9$. Hence the integral is

$$
\begin{aligned}
& \int \frac{3 z+2}{z^{2}+4} d z+\int \frac{5 d z}{z+2}+\int \frac{-9 d z}{z-2}=\frac{3}{2} \int \frac{2 z}{z^{2}+4} d z+2 \int \frac{d z}{z^{2}+4}+5 \int \frac{d z}{z+2}-9 \int \frac{d z}{z-2} \\
& =\frac{3}{2} \ln \left(z^{2}+4\right)+\arctan (z / 2)+5 \ln |z+2|-9 \ln |z-2|
\end{aligned}
$$

