Integral test

Suppose $\left(a_{n}\right)_{n=1}^{\infty}=(f(n))_{n=1}^{\infty}$ where

- f is positive on $[1, \infty)$,
- f is decreasing on $[1, \infty)$,
- f is integrable on each interval $[1, T)$.

Then the series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) d x$ converges. [In other words if one converges/diverges, so does the other.] Moreover, we have the following estimate on the remainder $R_{N}=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{N} a_{n}$

$$
\int_{N+1}^{\infty} f(x) d x \leq R_{N} \leq \int_{N}^{\infty} f(x) d x .
$$

The series $\sum_{n=1}^{\infty} a_{n}$ can be interpreted as an improper integral of either of the piecewise constant functions

$$
U(x)=a_{n}, n<x \leq n+1, L(x)=a_{n}, n-1<x \leq n,
$$

whose graphs are above and below the graph of $f(x)$ respectively.

You can apply the integral test to tails of series, i.e. forget finitely many initial terms, so that the sequence of terms need only be eventually decreasing and eventually positive.

For example, consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$. For $p \leq 0$ the terms do not approach zero, so the series diverges. For $p>0$, we can compare the series to the improper integral

$$
\int_{1}^{\infty} \frac{d x}{x^{p}}
$$

since $f(x)=1 / x^{p}$ is decreasing, positive, and continuous on $[1, \infty)$. For $p \neq 1$ We have
$\int_{1}^{\infty} \frac{d x}{x^{p}}=\lim _{T \rightarrow \infty} \int_{1}^{T} \frac{d x}{x^{p}}=\left.\lim _{T \rightarrow \infty} \frac{1}{(1-p) x^{p-1}}\right|_{1} ^{T}=\lim _{T \rightarrow \infty} \frac{1}{(1-p) T^{p-1}}-\frac{1}{1-p}=\left\{\begin{array}{cc}\frac{1}{p-1} & p>1 \\ \infty & 0<p<1\end{array}\right.$, while for $p=1$

$$
\int_{1}^{\infty} \frac{d x}{x}=\lim _{T \rightarrow \infty} \ln T=\infty
$$

Hence

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}\left\{\begin{array}{cc}
\text { converges } & p>1 \\
\text { diverges } & p \leq 1
\end{array} .\right.
$$

Use the integral test to show the convergence or divergence of the following series. Make sure the hypotheses are satisfied:

1. $\sum_{n=1}^{\infty} \frac{\ln n}{n}$
2. $\sum_{n=1}^{\infty} n e^{-n}$
3. $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{3}}$
4. For the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, find N such that the remainder R_{N} is less than $1 / 1000$.
5. For the series $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$, estimate the remainder after adding the first 10 terms.
