Integration by substitution (chain rule backwards)
If g is differentiable at x and f is differentiable at g(z), then f(g(z)) is differentiable with

[f(g(=)] = f'(9(x))g'(z) (chain rule).

Reversing this, if we are trying to integrate something of the form

[ run

and we know an antiderivative for f, F’ = f, then

[ futenGode = Fu(o)),

since the derivative of the right-hand side is the integrand of the left-hand side. In other words,
we integrate by “substituting” the function u(z) with the variable u and the differential %dm

by du:
[ ftutanGpde = [ a)du = Pl = Fluto)).

For definite integrals, one needs to change the limits of integration when making a substitution:
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o= rwdu,

u=u(a)

r=b U
| tutenGpde = Pla@)|” = Fla(t) - Flula) = Fu

=a

Some examples:
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u=cosz, du=—sinzdz, u(0) =1, u(r/4) =1/V2,

we have
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o /Cosgr/a:)dx With u = 7/z, du = —%d% we have

/cos(z/x)dgﬁ = —i/COS(W/l‘> (—%) dr = ! /cosu du = _sinu = _sin(ﬂ/x).
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Try it out!
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