Integration by substitution (chain rule backwards)

If g is differentiable at x and f is differentiable at $g(x)$, then $f(g(x))$ is differentiable with

$$
[f(g(x))]^{\prime}=f^{\prime}(g(x)) g^{\prime}(x) \text { (chain rule) }
$$

Reversing this, if we are trying to integrate something of the form

$$
\int f(u(x)) \frac{d u}{d x} d x
$$

and we know an antiderivative for $f, F^{\prime}=f$, then

$$
\int f(u(x)) \frac{d u}{d x} d x=F(u(x)),
$$

since the derivative of the right-hand side is the integrand of the left-hand side. In other words, we integrate by "substituting" the function $u(x)$ with the variable u and the differential $\frac{d u}{d x} d x$ by $d u$:

$$
\int f(u(x)) \frac{d u}{d x} d x=\int f(u) d u=F(u)=F(u(x)) .
$$

For definite integrals, one needs to change the limits of integration when making a substitution:

$$
\int_{x=a}^{x=b} f(u(x)) \frac{d u}{d x} d x=\left.F(u(x))\right|_{x=a} ^{x=b}=F(u(b))-F(u(a))=\left.F(u)\right|_{u=u(a)} ^{u=u(b)}=\int_{u=u(a)}^{u=u(b)} f(u) d u .
$$

Some examples:

- $\int_{0}^{\pi / 4} \tan x d x=\int_{0}^{\pi / 4} \frac{\sin x}{\cos x} d x$. With

$$
u=\cos x, d u=-\sin x d x, u(0)=1, u(\pi / 4)=1 / \sqrt{2}
$$

we have

$$
\int_{0}^{\pi / 4} \frac{\sin x}{\cos x} d x=\int_{1}^{1 / \sqrt{2}} \frac{d u}{u}=\left.\ln |u|\right|_{1} ^{1 / \sqrt{2}}=\frac{\ln 2}{2} .
$$

- $\int \frac{\cos (\pi / x)}{x^{2}} d x$. With $u=\pi / x, d u=-\frac{\pi}{x^{2}} d x$, we have

$$
\begin{gathered}
\int \frac{\cos (\pi / x)}{x^{2}} d x=-\frac{1}{\pi} \int \cos (\pi / x)\left(-\frac{\pi}{x^{2}}\right) d x=-\frac{1}{\pi} \int \cos u d u=-\frac{\sin u}{\pi}=-\frac{\sin (\pi / x)}{\pi} . \\
\cdot \int_{0}^{1} \frac{x}{1+x^{4}} d x=\int_{0}^{1} \frac{x d x}{1+\left(x^{2}\right)^{2}} . \text { With } u=x^{2}, d u=2 x d x, u(0)=0, u(1)=1 \\
\frac{1}{2} \int_{0}^{1} \frac{d u}{1+u^{2}}=\left.\frac{1}{2} \arctan u\right|_{0} ^{1}=\frac{1}{2}(\pi / 4-0)=\pi / 8 .
\end{gathered}
$$

Try it out!

1. $\int x \sin \left(x^{2}\right) d x$
2. $\int \sqrt{x}(x+3) d x, \int x \sqrt{x+3} d x$
3. $\int_{1}^{e} \frac{\sqrt{\ln x}}{x} d x$
4. $\int \frac{x+4}{x} d x, \int \frac{x}{x+4} d x$
5. $\int \frac{e^{x}}{\sqrt{1-e^{2 x}}} d x$
6. $\int \frac{\arctan x}{1+x^{2}} d x$
7. $\int \frac{x^{3}}{\left(1+x^{2}\right)^{2}} d x$
8. $\int_{-2}^{0} \frac{x^{2}}{\sqrt{1-x^{3}}} d x$
