Euler's method

Suppose we want to approximate a solution to the initial value problem

$$
y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

The slope of the tangent line to the actual solution is given by $f\left(x_{0}, y_{0}\right)$. If we go along the tangent line for a short time, say from x_{0} to $x_{0}+h$, we move from the point $\left(x_{0}, y_{0}\right)$ to the new point

$$
\begin{aligned}
& x_{1}=x_{0}+h, \\
& y_{1}=y_{0}+f\left(x_{0}, y_{0}\right) h .
\end{aligned}
$$

If we repeat this process, following the tangent line to an actual solution through the point (x_{1}, y_{1}), which has slope $f\left(x_{1}, y_{1}\right)$, for another step of length h, we end up at the point

$$
\begin{aligned}
& x_{2}=x_{1}+h, \\
& y_{2}=y_{1}+f\left(x_{1}, y_{1}\right) h .
\end{aligned}
$$

In general, taking one more step of size h gives a new position $\left(x_{n+1}, y_{n+1}\right)$ depending on the previous position $\left(x_{n}, y_{n}\right)$ as follows:

$$
\begin{aligned}
x_{n+1} & =x_{n}+h, \\
y_{n+1} & =y_{n}+f\left(x_{n}, y_{n}\right) h .
\end{aligned}
$$

Problems

1. Fill in the table using 6 steps of size $h=1 / 2$ to approximate the solution to

$$
\frac{d y}{d x}=f\left(x_{n}, y_{n}\right)=x y, y(0)=1,
$$

at $x=3$.

n	0	1	2	3	4	5	6
x_{n}	0						
y_{n}	1						
$f\left(x_{n}, y_{n}\right)$							

2. (a) It is easy to check that $y=e^{x}$ is a solution to the initial value problem

$$
y^{\prime}=y, y(0)=1
$$

Break the interval $[0,1]$ into 6 piece of equal length and use Euler's method to approximate e.
(b) (Challenge) Break the interval [0,1] into n pieces of equal length and use Euler's method to approximate e. Take the limit as $n \rightarrow \infty$ and show that your approximation actually converges to e.

