Error bound for the trapezoidal rule

We want to control the error
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where T;, is the sum of the areas of the trapezoids of equal width h = I’_T“ and parallel heights
f(z4), (xit1), and z; = a + bh define the partition of [a,b] into n equal parts.

Let’s consider one piece at a time. For the integral we integrate by parts twice, leaving
arbitrary constants C and D when taking antiderivatives:
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First, we choose C so that the first term above is the area of the trapezoid in our approximation:

f(xi) + f(wiy1)
b S +1

= [(t+ O)f(t +2)lf = (C + 1) f(wi1) — Cf(zi), C = _g_

Next we choose D so that the second term is zero:
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Hence we get
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To bound the error, we have to bound the integral on the right. Assuming |f”(z)| < K on the
interval [a, b], we can estimate
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Finally we add up the error from each interval to get (n intervals, h = b_T“)
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