Error bound for the trapezoidal rule

We want to control the error

$$
E_{T}(n)=\int_{a}^{b} f(x) d x-T_{n}, T_{n}=\sum_{i=0}^{n-1} \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2} h
$$

where T_{n} is the sum of the areas of the trapezoids of equal width $h=\frac{b-a}{n}$ and parallel heights $f\left(x_{i}\right),\left(x_{i+1}\right)$, and $x_{i}=a+b h$ define the partition of $[a, b]$ into n equal parts.

Let's consider one piece at a time. For the integral we integrate by parts twice, leaving arbitrary constants C and D when taking antiderivatives:

$$
\begin{aligned}
& \int_{x_{i}}^{x_{i+1}} f(x) d x=\int_{0}^{h} f\left(t+x_{i}\right) d t \\
& =\left[(t+C) f\left(t+x_{i}\right)\right]_{0}^{h}-\left[\left(\frac{(t+C)^{2}}{2}+D\right) f^{\prime}\left(x_{i}+t\right)\right]_{0}^{h}+\int_{0}^{h}\left(\frac{(t+C)^{2}}{2}+D\right) f^{\prime \prime}\left(x_{i}+t\right) d t
\end{aligned}
$$

First, we choose C so that the first term above is the area of the trapezoid in our approximation:

$$
h \frac{f\left(x_{i}\right)+f\left(x_{i+1}\right)}{2}=\left[(t+C) f\left(t+x_{i}\right)\right]_{0}^{h}=(C+h) f\left(x_{i+1}\right)-C f\left(x_{i}\right), C=-\frac{h}{2} .
$$

Next we choose D so that the second term is zero:

$$
0=\left[\left(\frac{(t+C)^{2}}{2}+D\right) f^{\prime}\left(x_{i}+t\right)\right]_{0}^{h}=\left(\frac{h^{2}}{8}+D\right) f^{\prime}\left(x_{i+1}\right)-\left(\frac{h^{2}}{8}+D\right) f^{\prime}\left(x_{i}\right), D=-\frac{h^{2}}{2} .
$$

Hence we get

$$
\int_{x_{i}}^{x_{i+1}} f(x) d x=\text { area of trapezoid }+\int_{0}^{h}\left(\frac{(t-h / 2)^{2}}{2}-\frac{h^{2}}{8}\right) f^{\prime \prime}\left(x_{i}+t\right) d t .
$$

To bound the error, we have to bound the integral on the right. Assuming $\left|f^{\prime \prime}(x)\right| \leq K$ on the interval $[a, b]$, we can estimate

$$
\left|\int_{0}^{h}\left(\frac{(t-h / 2)^{2}}{2}-\frac{h^{2}}{8}\right) f^{\prime \prime}\left(x_{i}+t\right) d t\right| \leq \int_{0}^{h}\left|\frac{(t-h / 2)^{2}}{2}-\frac{h^{2}}{8}\right| K_{i} d t=\frac{K_{i}}{2} \int_{0}^{h}|t(t-h)| d t=K_{i} \frac{h^{3}}{12} .
$$

Finally we add up the error from each interval to get (n intervals, $h=\frac{b-a}{n}$)

$$
\left|\int_{a}^{b} f(x) d x-T_{n}\right|=n \frac{K h^{3}}{12}=\frac{K(b-a)^{3}}{12 n^{2}} .
$$

