Derivatives of common functions

You have to know all of this forever and ever.

- Constants don't change:

$$
\frac{d}{d x}(c)=0, c \in \mathbb{R} .
$$

- Linearity:

$$
\frac{d}{d x}(f(x)+g(x))=\frac{d f}{d x}+\frac{d g}{d x}, \frac{d}{d x}(c f(x))=c \frac{d f}{d x}, c \in \mathbb{R} .
$$

- Product rule:

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

- Quotient rule:

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}
$$

- Chain rule:

$$
[f(g(x))]^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)
$$

- Fundamental theorem of calculus: Suppose f is continuous on an open interval containing a and x.

$$
\text { If } F(x):=\int_{a}^{x} f(t) d t, \text { then } \frac{d F}{d x}=f \text {. }
$$

- Power functions:

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} .
$$

- Exponential and logarithmic functions:

$$
\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a, \frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}, \text { for } a>0 \text { constant }
$$

- Trigonometric functions:

$$
\begin{gathered}
(\sin x)^{\prime}=\cos x,(\cos x)^{\prime}=-\sin x,(\tan x)^{\prime}=\sec ^{2} x \\
(\csc x)^{\prime}=-\csc x \cot x,(\sec x)^{\prime}=\sec x \tan x,(\cot x)^{\prime}=-\csc ^{2} x .
\end{gathered}
$$

- Inverse trigonometric functions:

$$
\frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}}, \frac{d}{d x}(\arccos x)=\frac{-1}{\sqrt{1-x^{2}}}, \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}},
$$

