
Trigonometric substitution

Expressions such as √
a2 − x2,

√
a2 + x2,

√
x2 − a2, a > 0 constant,

may remind you of writing one side of a right triangle in terms of the other

a2 + b2 = c2 =⇒ c =
√
a2 + b2, a =

√
c2 − b2.

We can eliminate the
√

with the Pythagorean identities

sin2 θ + cos2 θ = 1, tan2 θ + 1 = sec2 θ, (1 + cot2 θ = csc2 θ)

by parameterizing x with trigonometric function

x = a sin θ, x = a tan θ, x = a sec θ.

With these substitutions, we have (for appropriate ranges of θ where, e.g.,
√

sin2 θ = | sin θ| =
sin θ) √

a2 − x2 =
√
a2 − (a sin θ)2 = a

√
1− sin2 θ = a

√
cos2 θ = a cos θ√

a2 + x2 =
√
a2 + (a tan θ)2 = a

√
1 + tan2 θ = a

√
sec2 θ = a sec θ√

x2 − a2 =
√

(a sec θ)2 − a2 = a
√

sec2 θ − 1 = a
√

tan2 θ = a tan θ.

We can use the above to integrate some new functions. The answers you get can usually be
rewritten in several ways, for instance

arccos(x) = arcsin(
√

1− x2) = arctan(
√

1/x2 − 1), etc.

We could also use the “hyperbolic” trigonometic functions (described in the next section), but
they are not strictly part of the cirriculum.

1.

∫ √
1− x2dx



2.

∫
dx√
x2 − 4

3. Find the area of the ellipse
x2

a2
+
y2

b2
= 1.



4.

∫
dx

x
√
x2 − 9

5.

∫
dx√

x2 + 4x+ 20



Extra-cirricular: hyperbolic trigonometric functions

The parameterization x = cos t, y = sin t nicely discribes the unit circle, x2 + y2 = 1; as t
increases, (x(t), y(t)) moves counter-clockwise around the circle at a constant speed.

There is a similar parameterization of the unit hyperbola x2 − y2 = 1 by the “hyperbolic”
(as opposed to “circular”) trigonometric functions, definied as

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
.

One can verify that

cosh2 t− sinh2 t = 1,
d

dt
cosh t = sinh t,

d

dt
sinh t = cosh t,

(see page 227 of your text). So it seems natural to use these to integrate functions involving√
x2 − a2 and

√
a2 + x2 (or even

√
a2 − x2 if we use tanh t and sech t).

The hyperbolic trigonometric functions are closely related to the circular trigonometric
functions, in fact we have

sin t =
eit − e−it

2i
= −i sinh(it), cos t =

eit + e−it

2
= cosh(it), i =

√
−1,

which we won’t discuss, but could prove after we discuss power series later in the course.
Another similarity comes from the fact that, sin t, cos t are the solutions to the differential
equations y′′ + y = 0 with initial conditions y(0) = 0, y′(0) = 1 and y(0) = 1, y′(0) = 0
respectively, where as sinh t and cosh t are solutions of y′′−y = 0 with the same initial conditions.
We will discuss some differential equation later in the course.

Extra-Extra-cirricular: eix = cosx+ i sinx

We will see later in the course that the exponential function ex has the power series expansion

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

6
+ . . . , where n! = n(n− 1)(n− 2) · . . . · 3 · 2 · 1,

whereas sinx and cosx have series expansions

sinx =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

6
+

x5

120
− . . . , cosx =

∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2
+
x4

24
− . . .

Replacing x by ix in ex (where i =
√
−1) gives

eix =
∞∑
n=0

(ix)n

n!
=

∑
n even

(ix)n

n!
+

∑
n odd

(ix)n

n!
=
∞∑
k=0

(−1)kx2k

(2k)!
+ i

∞∑
k=0

(−1)kx2k+1

(2k + 1)!

= cosx+ i sinx

where we write n = 2k for n even and n = 2k+1 for n odd, so that i2k = (−1)k, i2k+1 = i(−1)k.


