Taylor¹ polynomials

The best constant approximation to a function f(x) near x = a is the constant function

$$T_0(x) = f(a)$$

The best linear approximation to f near x = a is the tangent line approximation

$$T_1(x) = f(a) + f'(a)(x - a)$$

which uses the value of f at a and the value of the first derivative of f at a.

The *n*th degree Taylor polynomial of f centered at x = a is the best *n*th degree polynomial approximation to f near x = a

$$T_n(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f''(a)(x-a)^2 + \frac{1}{6}f'''(a)(x-a)^3 + \dots + \frac{1}{n!}f^{(n)}(a)(x-a)^n$$

= $\sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k$,

assuming f is n times differentiable at x = a. [The notation $f^{(n)}$ means the nth derivative of f, and $f^{(0)}$ means the zeroth derivative, i.e. the function itself.] The Taylor polynomial T_n is determined by the numbers

$$f(a), f'(a), \ldots, f^{(n)}(a).$$

The Taylor polynomial T_n is the unique *n*th degree polynomial whose derivatives of order $\leq n$ at x = a agree with the derivatives of f at x = a:

$$T_n(a) = f(a), \ T'_n(a) = f'(a), \ T''(a) = f''(a), \dots, \ T_n^{(n)}(a) = f^{(n)}(a).$$

By "best" approximation, we mean

$$\lim_{x \to a} \frac{f(x) - T_n(x)}{(x - a)^n} = 0.$$

In fact we have

$$f(x) - T_n(x) = \frac{1}{n!} \int_a^x (x-t)^{n+1} f^{(n+1)}(t) dt = \frac{f^{(n+1)}(z)}{(n+1)!} (x-a)^{n+1}$$

for some z between x and a. [The first of these follows from integration by parts, and the second is a version of the mean value theorem. Proofs can be found here.]

Find the fifth degree Taylor polynomials centered at a = 0 for the following functions. Try to establish a pattern for the coefficients and express $T_n(x)$ in summation notation.

¹Brook Taylor, (1685-1731)

$$f(x) = e^x$$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$f^{(n)}(0)/n!$
0	e^x	1	1
1	e^x	1	1
2	e^x	1	1/2
3	e^x	1	1/6
4	e^x	1	1/24
5	e^x	1	1/120

$$T_5(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}$$

 $f(x) = \sin x$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$f^{(n)}(0)/n!$
0	$\sin x$	0	0
1	$\cos x$	1	1
2	$-\sin x$	0	0
3	$-\cos x$	-1	-1/6
4	$\sin x$	0	0
5	$\cos x$	1	1/120

$$T_5(x) = x - \frac{x^3}{6} + \frac{x^5}{120}$$

 $f(x) = \cos x$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$f^{(n)}(0)/n!$
0	$\cos x$	1	1
1	$-\sin x$	0	0
2	$-\cos x$	-1	-1/2
3	$\sin x$	0	0
4	$\cos x$	1	1/24
5	$-\sin x$	0	0

$$T_5(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24}$$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$f^{(n)}(0)/n!$
0	$\frac{1}{1-x}$	1	1
1	$\frac{1}{(1-x)^2}$	1	1
2	$\frac{2}{(1-x)^3}$	2	1
3	$\frac{3\cdot 2\cdot 1}{(1-x)^4}$	6	1
4	$\frac{4!}{(1-x)^5}$	4!	1
5	$\frac{5!}{(1-x)^6}$	5!	1

$$T_5(x) = 1 + x + x^2 + x^3 + x^4 + x^5$$

 $f(x) = \arctan x$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$f^{(n)}(0)/n!$
0	$\arctan x$	0	0
1	$\frac{1}{1+x^2}$	1	1
2	$\frac{-2x}{(1+x^2)^2}$	0	0
3	$\frac{6x^2-2}{(1+x^2)^3}$	-2	-1/3
4	$\frac{24x(1-x^2)}{(1+x^2)^4}$	0	0
5	$\frac{24(5x^4 - 10x^2 + 1)}{(1+x^2)^5}$	24	1/5

$$T_5(x) = x - \frac{x^3}{3} + \frac{x^5}{5}$$

 $f(x) = -\ln(1-x)$

n	$f^{(n)}(x)$	$f^{(n)}(0)$	$f^{(n)}(0)/n!$
0	$=\ln(1-x)$	0	0
1	$\frac{1}{1-x}$	1	1
2	$\frac{1}{(1-x)^2}$	1	1/2
3	$\frac{2}{(1-x)^3}$	2	1/3
4	$\frac{6}{(1-x)^4}$	6	1/4
5	$\frac{4!}{(1-x)^5}$	4!	1/5

$$T_5(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5}$$