Determine whether the following series converge or diverge. If a series converges and the terms are not eventually positive, determine whether or not the convergence is absolute.

1. $\sum_{n=1}^{\infty} \frac{n}{n^{3}+1}$

Converges by direct or limit comparison to $\sum_{n} \frac{1}{n^{2}}$.
2. $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}$

Diverges by limit comparison to $\sum_{n} \frac{1}{n}$.
3. $\sum_{n=1}^{\infty} \frac{n^{3}}{5^{n}}$

Converges by the ratio test.
4. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$

Converges (conditionally) by the alternating series test.
5. $\sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}$

Diverges by the integral test, comparing to $\int_{2}^{\infty} \frac{d x}{x \sqrt{\ln x}}$.
6. $\sum_{n=1}^{\infty} \ln \left(\frac{n}{3 n+1}\right)$

Diverges by the divergence test, $\ln \left(\frac{n}{3 n+1}\right) \rightarrow \ln (1 / 3)$.
7. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sqrt{n}}{n+1}$

Converges (conditionally) by the alternating series test.
8. $\sum_{n=1}^{\infty} \frac{\cos (3 n)}{1+(1.2)^{n}}$

Converges (absolutely) by direct comparison to $\sum_{n} \frac{1}{(1.2)^{n}}$.
9. $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}{5^{n} n!}$

Converges by the ratio test.
10. $\sum_{n=1}^{\infty}\left(\frac{1+n}{3 n}\right)^{n}$

Converges by the ratio test.
11. $\sum_{n=1}^{\infty}(1-\cos (1 / n))$ [Hint: compare to $\sum_{n} \frac{1}{n^{2}}$.]

Converges by limit comparison to $\sum_{n} \frac{1}{n^{2}}$.
12. $\sum_{n=1}^{\infty} \frac{8^{n}}{n!}$

Converges by the ratio test.
13. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{n}}{n^{2}}$

Diverges by the divergence test (or ratio test).
14. $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$

Converges (conditionally) by the alternating series test.
15. $\sum_{n=1}^{\infty} \frac{\tan (1 / n)}{n^{3 / 2}}$

Converges by direct or limit comparison to $\frac{\pi}{4} \sum_{n} \frac{1}{n^{3 / 2}}$.
16. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2+\sin n}$

Diverges by the divergence test, $\frac{1}{2+\sin n} \geq 1 / 3$.
17. $\sum_{n=1}^{\infty} \sin \left(1 / n^{2}\right)$

Converges by limit comparison to $\sum_{n} \frac{1}{n^{2}}$.
18. $\sum_{n=1}^{\infty} \cos \left(1 / n^{2}\right)$

Diverges by the divergence test $\left(\cos \left(1 / n^{2}\right) \rightarrow 1\right)$.
19. $\sum_{n=1}^{\infty} \tan \left(1 / n^{2}\right)$

Converges by limit comparison to $\sum_{n} \frac{1}{n^{2}}$.
20. $\sum_{n=1}^{\infty} n e^{-n^{2}}$

Converges by the integral test or the ratio test.

