
Ratio test

The ratio test compares a series to a geometric series. In a geometric series, the ratio of adjacent
terms is constant
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and the series converges if |r| < 1 (the terms of the series do not approach zero if |r| ≥ 1). The
ratio test is the following:
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For the ratio test to give convergence, the series must be converging as quickly as a convergent
geometric series. If the ratio test gives divergence, then the terms of the series do not approach
zero.
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The first diverges and the second converges but the ratio test says nothing about either:
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