MATH 2300-016 QUIZ 3 Pt. 2 Name:

Collaborators (if any):

Due Tuesday, February 6th at the beginning of class. Submit your work on additional paper,
treating this page as a cover sheet. You may use technology and work with with other
students. If you work with others, please list their names above.
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1. For which values of p does / ( * converge/diverge? Find the value of the
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z(lnx)P

improper integral when it is convergent.
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2. For what values of p does the improper integral / — converge?
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3. First, show that / 373:_’_1 converges by comparison. Second, find the value of the
0 x

improper integral. (You should get %)

4. Find the value of C for which the following improper integral converges and evaluate the

integral for this value of C:
o0 1 C
I (e aa)
0 [,[,‘2 + 4 x + 2

[Note that the integral of each summand separately is divergent, but the right choice of
C gives “cancellation” and a convergent integral.]

Solutions:

1. If p # 1 we have
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which is p%l ifp>1and coif p<1. For p =1 we get tlim In(lnt) = co and the integral
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diverges as well. In summary
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2. For p # 1 we have
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which is — 1fp <land ocoif p>1. For p=1we get lim —Int = co and the integral
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ﬁ < 5 on [1,00) so that
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As for the actual value, we use partial fractions:
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1=(A+B)2*+ (-A+B+C)z+ (A+0),

1 1 2
A=-,B=--,0="2,
3 3’ 3

dlverges as Well. In summary
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3. For instance, we can compare

Hence the improper integral is
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In the last line we are using the limit
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4. The integral is (with z = 2tan 6 integrating the first summand)
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Now we see that C' =1 is the only possibility, else 5&:2)‘2'5 goes to 0 or co as t — oo and

the logarithm will diverge. For C' = 1, the value of the integral is In 2.



