MATH 2300-016 QUIZ 11 (take home, due Monday 4/9) Name:

1. Express
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as an infinite series. Use the first two terms of the series to approximate the definite
integral and bound the error using the alternating series remainder estimate.
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This is a convergent alternating series. Using the first two terms to estimate the definite
integral (i.e. the n =0 and 1 terms), we get

b 11 1 1 _
ASm@ﬂm_<3_m>%ﬂqm+$meﬂ4ﬂ:1w0:&mm&

or

0.30876... = — = — — —— + —— = ——-=0.31028....

951 13 1 Lo, 131 2867
= = < sm(x )< —
3080 42 1320 © 42 7 1320 9240

1 oo
2. Starting with the geometric series, T Z x" for |z| < 1, show that
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[Hint: Evaluate arctan(zx) at 1/v/3.]

For |z| < 1, we have
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Evaluating both sides at = 1/1/3, we get
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which gives the result after multiplying both sides by 6.



3. Find the Taylor series for cosx centered at x = 7/3 in two ways: from scratch and using
the trigonometric identity

cos(z) = cos(x — w/3 + m/3) = cos(x — 7/3) cos(m/3) — sin(x — 7/3) sin(w/3)

along with knowledge of the Taylor series for sinz, cosx centered at x = 0.

Let f(x) = cosz. The derivatives of f are periodic, with values at a = 7 /3 as follows
(here n = 4k +1):
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So the Taylor series for f centered at a = /3 is (separating into even and odd n)
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Or we can use the trigonometric identity above and evaluate the Taylor series for sine
and cosine at z — 7/3:

cos(z) = cos(x — w/3 + 7/3) = cos(xz — 7/3) cos(m/3) — sin(x — 7/3) sin(w/3)
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4. Show that
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for all x, i.e. use Taylor’s inequality to show that the difference between cosx and its
(2N'th degree) Taylor polynomial

N 420
n
cos T — ngzo(—l) n)]

goes to zero as N — oo.

Fix a value of x. For any n the abolute value of the (n + 1)st derivative of cost is
bounded above by M = 1 on the interval between zero and = (because the (n + 1)st
derivative is one of cost, —sint, — cost, or sint, all of which are bounded between +1).
Taylor’s inequality shows that
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so that cosz is equal to its Taylor series centered at zero.



5. Find Ty(x), the fourth degree Taylor polynomial for f(z) = \/x centered at =9, and
use Ty(x) to estimate v/10. Use Taylor’s inequality to bound the error in the
approximation.

We have
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Hence the fourth degree Taylor polynomial centered at a =9 is
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This give an approximation of
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= 3.162276 . ..

The maximum of | f®) ()| on the interval [9,10] is at = 9
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good to six digits.



