
Power series

A power series (centered at a) is a function of the form

f(x) =
∞∑
n=0

cn(x− a)n, cn ∈ R,

a “polynomial of infinite degree.” They behave somewhat like geometric series in that there
is some 0 ≤ R ≤ ∞, the radius of convergence, such that the series f(x) converges for
|x − a| < R and diverges for |x − a| > R. Convergence at the end points of the the interval
[a−R, a+R] must be checked separately. The interval of convergence is (the largest interval)
where the power series converges, one of

R = 0 : {a},
R =∞ : (−∞,∞),

0 < R <∞ : (a−R, a + R), (a−R, a + R], [a−R, a + R), [a−R, a + R].

The radius of convergence is determined by

1

R
= lim sup

n→∞
|cn|1/n

although we won’t discuss this concept (lim sup
n→∞

an is the largest limit of any subsequence of

an), but if the limits

lim
n→∞

|cn|1/n or lim
n→∞

∣∣∣∣cn+1

cn

∣∣∣∣
exist, then they are equal to each other and to 1/R. In other words, we can often use the ratio
test or root test to find the radius of convergence. The convergence of the series inside the
radius of convergence (i.e. on the interval (a − R, a + R)) is “uniform” (a techinical concept
that says that the rate of convergence of the partial sums to f(x) doesn’t depend on x in any
closed subinterval inside the radius of convergence), but it implies the following:

• [term-by-term differentiation] The function f(x) is differentiable on (a−R, a+R) and its
derivative is given by

f ′(x) =

∞∑
n=0

ncn(x− a)n−1,

i.e. we can interchange Σ and d
dx . The radius of convergence of the resulting power series

f ′(x) is also R.

• [term-by-term integration] The function f(x) is integrable on (a − R, a + R) and an
antiderivative is given by ∫

f(x)dx =
∞∑
n=0

cn
n + 1

(x− a)n+1,

i.e. we can interchange Σ and
∫

. The radius of convergence of the resulting power series∫
f(x) dx is also R.



Find the interval of convergence of the following power series:

1.
∞∑
n=1

3n

n
(x− 1)n

The ratio test gives convergence

lim
n→∞

3n+1|x− 1|n+1/(n + 1)

3n|x− 1|n/n
= 3|x− 1| lim

n→∞

n

n + 1
= 3|x− 1| < 1

so the radius of convergence is R = 1/3. At the endpoints x = 2/3, 4/3 we have the series

∞∑
n=1

(−1)n

n
,
∞∑
n=1

1

n

respectively (the first converges by the AST and the second is the divergent harmonic
series). Hence the interval of convergence is [2/3, 4/3).

2.

∞∑
n=1

nn(x− 2)n

The ratio test gives

lim
n→∞

(n + 1)n+1|x− 2|n+1

nn|x− 2|n
= |x− 2| lim

n→∞
(1 + 1/n)n(n + 1) =∞

unless x = 2. Hence R = 0 and the interval of convergence is {2} (the series only converges
at x = 2).

3.
∞∑
n=0

en

n!
(x− 3)n

The ratio test gives

lim
n→∞

en+1|x− 3|n+1/(n + 1)!

en|x− 3|n/n!
= e|x− 1| lim

n→∞

1

n + 1
= 0

so the radius of convergence is R = ∞. Hence the interval of convergence is (−∞,∞)
(i.e. the series converges everywhere).



4.

∞∑
n=2

(x− 4)n

n(lnn)3/2

The ratio test gives convergence when

lim
n→∞

|x− 4|n+1/(n + 1) ln(n + 1)3/2

|x− 4|n/n(lnn)3/2
= |x− 4| lim

n→∞

n

n + 1

(
lnn

ln(n + 1)

)3/2

= |x− 4| < 1

so the radius of convergence is R = 1. At the endpoints x = 3, 5 we have the series

∞∑
n=1

(−1)n

n(lnn)3/2
,
∞∑
n=1

1

n(lnn)3/2

respectively (the first converges by the AST and the second is the convergent by the
integral test). Hence the interval of convergence is [3, 5].

An example we’ve seen before is the geometric series

1

1− x
=
∞∑
n=0

xn for − 1 < x < 1.

This power series is centered at a = 0 and has radius of convergence R = 1. Let’s manipulate this
series using the properties above to find power series representations for some other functions.

1. Integrate
∞∑
n=0

xn to find a power series representation for the function ln(1 − x) on the

interval (−1, 1). What is the interval of convergence for the resulting power series?

We have

− ln(1− x) + C =

∫
dx

1− x
=

∫ ( ∞∑
n=0

xn

)
dx =

∞∑
n=0

xn+1

n + 1
=

∞∑
n=1

xn

n
.

Evaluating both sides at x = 0 shows that C = 0. Hence

ln(1− x) =

∞∑
n=1

xn

n
for − 1 < x < 1.

Note that the radius of convergence for the new series is 1, the same as the geometric
series. However, the new series also converges at x = −1.



2. Differentiate

∞∑
n=0

xn term-by-term to find a power series representation for the function

1

(1− x)2
on the interval (−1, 1). What is the interval of convergence of the resulting

power series?

We have

1

(1− x)2
=

d

dx

1

1− x
=

d

dx

∞∑
n=0

xn =
∞∑
n=0

nxn−1 =
∞∑
n=0

(n + 1)xn for − 1 < x < 1.

The interval of convergence of the new series is (−1, 1).

3. Substitute x = −x2 into
1

1− x
=
∞∑
n=0

xn and integrate term-by-term to obtain a series

representation for arctanx. What is the interval of convergence for the resulting power
series?

Substituting −x2 into the geometric series gives

1

1 + x2
=

1

1− (−x2)
=

∞∑
n=0

(−x2)n =

∞∑
n=0

(−1)nx2n for − 1 < x < 1

since |x| < 1 if and only if | − x2| < 1. We now integrate term-by-term:

arctanx + C =

∫
dx

1 + x2
=

∫ ( ∞∑
n=0

(−1)nx2n

)
dx =

∞∑
n=0

(−1)n
x2n+1

2n + 1
.

Evaluating both sides at x = 0 gives C = 0. Hence

arctanx =

∞∑
n=0

(−1)n
x2n+1

2n + 1
for − 1 < x < 1.

The new series has interval of convergence [−1, 1).


