Trigonometric substitution

Expressions such as

Va2 — 22, Va2 + 22, /22 — a2, a > 0 constant,
may remind you of writing one side of a right triangle in terms of the other
a2+b2202:>c:\/m, a:\/m.
We can eliminate the va with the Pythagorean identities
sin?@ + cos? =1, tan?0 + 1 =sec? 6, (14 cot?h = csc?h)
by parameterizing x with trigonometric function
r=asinf, x =atand, x = asech.

With these substitutions, we have (for appropriate ranges of 0)

a2 — 22 = \/a? — (asinf)? = a1 —sin?0 = aVcos? 6 = acosf
Va2 + 22 =1+/a2+ (atanf)? = a\/1 +tan? 0 = aVsec? § = asecl
22 —a?2 = +/(asech)? — a2 = av/sec? — 1 = aVtan?f = atanf.

We can use the above to integrate some new functions. The answers you get can usually be
rewritten in several ways, for instance

arccos(x) = arcsin(y/1 — 22) = arctan(y/1/22 — 1), ete.

We could also use the “hyperbolic” trigonometic functions (described in the next section), but
they are not strictly part of the cirriculum.

. / V1 — 2%2dz. With z = sinf, dx = cos 0 df, we have

/ V1—x?dx = / V1 —sin? 0 cos 0df = /C082 0do = ;/(1 + cos(26))do

0 sm(29)
2 4
Now, we need to get back the variable z = sin#, 8 = arcsinz. The right triangle with
angle 0, hypothenuse 1, opposite side = and adjacent side v/1 — 22 (draw a picture) satisfies

x = sin @ and tells us that cos = v/1 — z2. Hence

1 1
5(9 +sinfcosf) = i(arcsin:v +xzv1— 2?).

1
(9 + sinf cos6).

dzx
° ————. With x = 2secf, dx = 2secftanfdf, we have
/ V2 —

/ /ZSeCHtanedG _ / 2 sec O tan 6doO B sec 0 tan 6d0
vV Vasec20 —4 2MsecZh—1 tan2 6
= /sec0d0 = In|sec + tan6)|.



We need to switch back to the variable z = 2secf, with 6 = arcsec(x/2). The right
triangle with angle 6, hypothenuse z, adjacent side 2, and opposite side vz2 — 4 (draw a
picture) satisfies 2secd = = and shows that tan = %\/ x2 — 4. Hence

g—l—;\/x?—él‘.

In|secf + tanf| = In

2 2
Find the area of the ellipse % + 'Z—Q = 1. The top half of the ellipse is given by the graph
a

of y = by/1 — (x/a)?. The area of one quarter of the ellipse is given by

/Oa by/1— (z/a)?dx.

With x = asin, dx = acos 0df, we have

a w/2
/ by/1— (z/a)?dx = / bV 1 — sin? fa cos 0df) = ab/
0 0

0

b [7/? b in(26)\ |7/2 b

= v (1 + cos(20))d = & <9+ sin( )> _
2 Jo 2 2

o 4

/2
cos® 0

Hence the total area of the ellipse is mab. When a = b = r (i.e. the ellipse is a circle of
radius 7), we get 72 as expected.

dr
——————. With x = 3sec0, dr = 3secl tan 0df, we have
/ V2 —9

/ dx B / 3secOtanfdd 1 / secf tan6df 1 / sec 0 tan 6do
xVx? -9 3secOHv9sec?f®—9 3 ) secHvsecth—1 3. sechvVtan20
1 0
=— [ df=—-.
3 / 3
Switching to x we get

6 1
373 arcsec(x/3).

We complete the square and substitute to get

/ dx
Va2 + 4z +20

/ dx B / dx B / du
Va2 4 4z 4 20 V(r+2)2+16 VuZ + 42
With v = 4tan 6, du = 4sec? 6df, we have

/ du B 4sec? Odo B sec2 6dp B sec2 0db
Vu? 4 42 V16tanZ 6 + 16 Vtan? + 1 Vsec2d
= /sec0d9 =In|sect + tan6)|.

Switching back to u = 4 tan 6 (triangles blahblahblah) and then to z = u — 2 we get

In|secf + tan @] = In|\/1 + (u/4)2 4+ u/4| = In|/1 + ((z +2)/4)2 + (z + 2)/4].




. /\/ 1 + 22dz. With = tan6, dxz = sec? 6 df, we have

/\/1+x2dx—/\/1+tan298e02 Gdﬁ—/se(:?’ 6do
1
:§(sec9tan9—|—ln]sec€—|—tan9|).

(The integral [ sec? 0 is on the quiz 1 take-home solutions). We need to get back to the
variable x = tan @, § = arctanz. The right triangle with angle 6, hypothenuse v/1 + 22,
adjacent side 1, and opposite side x (draw a picture) satisfies x = tan @ and shows that

secd = v/1+ z2. Hence
1 1
5(8609‘5&119—i—ln]sec@—i—tan&]) = 5(37\/1 + 22 +In|z + 1+ z?)).

° /\/:ﬁjdx With z = secl, dx = secftanf df, we have

/\/xQ1dx:/\/sec291sec€tan9d9:/sec@tan29d0:/secﬂ(1se02 0)do
1
—/sec@d&—/sec?’&l@—ln\se(:0+tan0\ — i(secﬁtanﬁ—i-ln]se09+tan0|).

We need to get back to the variable z = secf, 8 = arcsec z. The right triangle with angle
6, hypothenuse z, adjacent side 1, and opposite side vz2 — 1 (draw a picture) satisfies
x = sec f and shows that tanf = /22 — 1. Hence

1
In|sec + tan | — i(seCQtaHH—i—ln\sec@—l—tan@])
1
=ln|z+ Va2 -1] - i(x\/ﬁ —1+Injz+ V2?2 -1))
1
= §(ln|ﬂs+ Va2 =1 —zva? —1).

Extra-cirricular: hyperbolic trigonometric functions

The parameterization @ = cost, y = sint nicely discribes the unit circle, 22 + 4> = 1; as t
increases, (z(t),y(t)) moves counter-clockwise around the circle at a constant speed.

There is a similar parameterization of the unit hyperbola z? — 4> = 1 by the “hyperbolic”
(as opposed to “circular”) trigonometric functions, definied as

t . -t of — ot
cosht = ———, sinht =

One can verify that
2 -y d . d .
cosh“t —sinh“t =1, 7 cosht = sinht, T sinh t = cosh t,

(see page 227 of your text). So it seems natural to use these to integrate functions involving

Va2 —a? and Va? + 2?2 (or even va? — 22 if we use tanh ¢ and secht).



The hyperbolic trigonometric functions are closely related to the circular trigonometric
functions, in fact we have
it _ it eit 4 it
sint = — = —isinh(it), cost = — = cosh(it), i = v—1,
i
which we won’t discuss, but could prove after we discuss power series later in the course.
Another similarity comes from the fact that, sint, cost are the solutions to the differential
equations y” + y = 0 with initial conditions y(0) = 0, ’(0) = 1 and y(0) = 1, ¥'(0) = 0
respectively, where as sinh ¢ and cosh t are solutions of 3/ —y = 0 with the same initial conditions.
We will discuss some differential equation later in the course.



