
Trigonometric substitution

Expressions such as √
a2 − x2,

√
a2 + x2,

√
x2 − a2, a > 0 constant,

may remind you of writing one side of a right triangle in terms of the other

a2 + b2 = c2 =⇒ c =
√
a2 + b2, a =

√
c2 − b2.

We can eliminate the
√

with the Pythagorean identities

sin2 θ + cos2 θ = 1, tan2 θ + 1 = sec2 θ, (1 + cot2 θ = csc2 θ)

by parameterizing x with trigonometric function

x = a sin θ, x = a tan θ, x = a sec θ.

With these substitutions, we have (for appropriate ranges of θ)√
a2 − x2 =

√
a2 − (a sin θ)2 = a

√
1− sin2 θ = a

√
cos2 θ = a cos θ√

a2 + x2 =
√
a2 + (a tan θ)2 = a

√
1 + tan2 θ = a

√
sec2 θ = a sec θ√

x2 − a2 =
√

(a sec θ)2 − a2 = a
√

sec2 θ − 1 = a
√

tan2 θ = a tan θ.

We can use the above to integrate some new functions. The answers you get can usually be
rewritten in several ways, for instance

arccos(x) = arcsin(
√

1− x2) = arctan(
√

1/x2 − 1), etc.

We could also use the “hyperbolic” trigonometic functions (described in the next section), but
they are not strictly part of the cirriculum.

•
∫ √

1− x2dx. With x = sin θ, dx = cos θ dθ, we have∫ √
1− x2dx =

∫ √
1− sin2 θ cos θdθ =

∫
cos2 θdθ =

1

2

∫
(1 + cos(2θ))dθ

=
θ

2
+

sin(2θ)

4
=

1

2
(θ + sin θ cos θ).

Now, we need to get back the variable x = sin θ, θ = arcsinx. The right triangle with
angle θ, hypothenuse 1, opposite side x and adjacent side

√
1− x2 (draw a picture) satisfies

x = sin θ and tells us that cos θ =
√

1− x2. Hence

1

2
(θ + sin θ cos θ) =

1

2
(arcsinx+ x

√
1− x2).

•
∫

dx√
x2 − 4

. With x = 2 sec θ, dx = 2 sec θ tan θdθ, we have∫
dx√
x2 − 4

=

∫
2 sec θ tan θdθ√

4 sec2 θ − 4
=

∫
2 sec θ tan θdθ

2
√

sec2 θ − 1
=

∫
sec θ tan θdθ√

tan2 θ

=

∫
sec θdθ = ln | sec θ + tan θ|.



We need to switch back to the variable x = 2 sec θ, with θ = arcsec(x/2). The right
triangle with angle θ, hypothenuse x, adjacent side 2, and opposite side

√
x2 − 4 (draw a

picture) satisfies 2 sec θ = x and shows that tan θ = 1
2

√
x2 − 4. Hence

ln | sec θ + tan θ| = ln

∣∣∣∣x2 +
1

2

√
x2 − 4

∣∣∣∣ .
• Find the area of the ellipse

x2

a2
+
y2

b2
= 1. The top half of the ellipse is given by the graph

of y = b
√

1− (x/a)2. The area of one quarter of the ellipse is given by∫ a

0
b
√

1− (x/a)2dx.

With x = a sin θ, dx = a cos θdθ, we have∫ a

0
b
√

1− (x/a)2dx =

∫ π/2

0
b
√

1− sin2 θa cos θdθ = ab

∫ π/2

0
cos2 θ

=
ab

2

∫ π/2

0
(1 + cos(2θ))dθ =

ab

2

(
θ +

sin(2θ)

2

) ∣∣∣π/2
0

=
πab

4
.

Hence the total area of the ellipse is πab. When a = b = r (i.e. the ellipse is a circle of
radius r), we get πr2 as expected.

•
∫

dx

x
√
x2 − 9

. With x = 3 sec θ, dx = 3 sec θ tan θdθ, we have

∫
dx

x
√
x2 − 9

=

∫
3 sec θ tan θdθ

3 sec θ
√

9 sec2 θ − 9
=

1

3

∫
sec θ tan θdθ

sec θ
√

sec2 θ − 1
=

1

3

∫
sec θ tan θdθ

sec θ
√
tan2θ

=
1

3

∫
dθ =

θ

3
.

Switching to x we get
θ

3
=

1

3
arcsec(x/3).

•
∫

dx√
x2 + 4x+ 20

. We complete the square and substitute to get

∫
dx√

x2 + 4x+ 20
=

∫
dx√

(x+ 2)2 + 16
=

∫
du√
u2 + 42

.

With u = 4 tan θ, du = 4 sec2 θdθ, we have∫
du√
u2 + 42

=

∫
4 sec2 θdθ√

16 tan2 θ + 16
=

∫
sec2 θdθ√
tan2 θ + 1

=

∫
sec2 θdθ√

sec2 θ

=

∫
sec θdθ = ln | sec θ + tan θ|.

Switching back to u = 4 tan θ (triangles blahblahblah) and then to x = u− 2 we get

ln | sec θ + tan θ| = ln |
√

1 + (u/4)2 + u/4| = ln |
√

1 + ((x+ 2)/4)2 + (x+ 2)/4|.



•
∫ √

1 + x2dx. With x = tan θ, dx = sec2 θ dθ, we have

∫ √
1 + x2dx =

∫ √
1 + tan2 θ sec2 θdθ =

∫
sec3 θdθ

=
1

2
(sec θ tan θ + ln | sec θ + tan θ|).

(The integral
∫

sec3 θθ is on the quiz 1 take-home solutions). We need to get back to the
variable x = tan θ, θ = arctanx. The right triangle with angle θ, hypothenuse

√
1 + x2,

adjacent side 1, and opposite side x (draw a picture) satisfies x = tan θ and shows that
sec θ =

√
1 + x2. Hence

1

2
(sec θ tan θ + ln | sec θ + tan θ|) =

1

2
(x
√

1 + x2 + ln |x+
√

1 + x2|).

•
∫ √

x2 − 1dx. With x = sec θ, dx = sec θ tan θ dθ, we have

∫ √
x2 − 1dx =

∫ √
sec2 θ − 1 sec θ tan θdθ =

∫
sec θ tan2 θdθ =

∫
sec θ(1− sec2 θ)dθ

=

∫
sec θdθ −

∫
sec3 θdθ = ln | sec θ + tan θ| − 1

2
(sec θ tan θ + ln | sec θ + tan θ|).

We need to get back to the variable x = sec θ, θ = arcsecx. The right triangle with angle
θ, hypothenuse x, adjacent side 1, and opposite side

√
x2 − 1 (draw a picture) satisfies

x = sec θ and shows that tan θ =
√
x2 − 1. Hence

ln | sec θ + tan θ| − 1

2
(sec θ tan θ + ln | sec θ + tan θ|)

= ln |x+
√
x2 − 1| − 1

2
(x
√
x2 − 1 + ln |x+

√
x2 − 1|)

=
1

2
(ln |x+

√
x2 − 1| − x

√
x2 − 1).

Extra-cirricular: hyperbolic trigonometric functions

The parameterization x = cos t, y = sin t nicely discribes the unit circle, x2 + y2 = 1; as t
increases, (x(t), y(t)) moves counter-clockwise around the circle at a constant speed.

There is a similar parameterization of the unit hyperbola x2 − y2 = 1 by the “hyperbolic”
(as opposed to “circular”) trigonometric functions, definied as

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
.

One can verify that

cosh2 t− sinh2 t = 1,
d

dt
cosh t = sinh t,

d

dt
sinh t = cosh t,

(see page 227 of your text). So it seems natural to use these to integrate functions involving√
x2 − a2 and

√
a2 + x2 (or even

√
a2 − x2 if we use tanh t and sech t).



The hyperbolic trigonometric functions are closely related to the circular trigonometric
functions, in fact we have

sin t =
eit − e−it

2i
= −i sinh(it), cos t =

eit + e−it

2
= cosh(it), i =

√
−1,

which we won’t discuss, but could prove after we discuss power series later in the course.
Another similarity comes from the fact that, sin t, cos t are the solutions to the differential
equations y′′ + y = 0 with initial conditions y(0) = 0, y′(0) = 1 and y(0) = 1, y′(0) = 0
respectively, where as sinh t and cosh t are solutions of y′′−y = 0 with the same initial conditions.
We will discuss some differential equation later in the course.


