MATH 2300-015 QUIZ 9 Due Tuesday, October 31st  Name:
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1. Starting with the geometric series, 1 = g z" for |z| < 1, show that
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[Hint: Evaluate arctan(zx) at 1/v/3.]

We have
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for |x| < 1. Integrating term-by-term gives
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for |z| < 1, after noting that the two functions agree at x = 0. Evaluating at z = 1//3,
we get

_ N o Vi VAR ) A SR e S G Ol
7r/6—arctan(1/\/§)—z 1 —\/57;)?)71(271_’_1),

n=0

which gives the desired result after multiplying both sides by 6.
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2. What is the radius of convergence of E —a"?
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The ratio of successive coefficients is
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so the radius of convergence is R = 1/e.

3. This problem will use power series to solve the initial value problem

o0
(a) Suppose y(z) = Z ¢,z is a solution. Differentiate y term-by-term and equate the
n=0
coefficients of 2™ on both sides of 3/ = y to determine c,.

We are supposing that
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Equating the coefficients of " gives
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so that ¢, = 1/nl.



(b) Show that the resulting series converges for all values of x and differentiate term-by-
term to verify that ¢’ = y.

The resulting series is
x ..n
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which has infinite radius of convergence
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—0=1/R, R = oc.

Differentiating term-by-term gives
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dv £=n! = nl —= (n—1)! — nl

verifying that this is in fact a solution to the differential equation above.



