MATH 2300-015 QUIZ 9 Due Tuesday, October 31st Name: _

1. Starting with the geometric series, $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ for |x| < 1, show that

$$\pi = 2\sqrt{3} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)3^n}.$$

[Hint: Evaluate $\arctan(x)$ at $1/\sqrt{3}$.]

- 2. What is the radius of convergence of $\sum_{n=0}^{\infty} \frac{n^n}{n!} x^n$?
- 3. This problem will use power series to solve the initial value problem

$$y' = y, y(0) = 1.$$

- (a) Suppose $y(x) = \sum_{n=0}^{\infty} c_n x^n$ is a solution. Differentiate y term-by-term and equate the coefficients of x^n on both sides of y' = y to determine c_n .
- (b) Show that the resulting series converges for all values of x and differentiate term-byterm to verify that y' = y.