Below are terse solutions for the problems. Your solutions should be MUCH more detailed.

1. Determine whether the following series converge or diverge. If a series converges and the terms are not eventually positive, determine whether or not the convergence is absolute

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

Converges by direct comparison to $\sum_n \frac{1}{n^2}$.

(b) $\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$ Diverges by limit comparison to $\sum_n \frac{1}{n}$.

(c)
$$\sum_{n=1}^{\infty} \frac{n^3}{5^n}$$

Converges by the ratio test $(|a_{n+1}/a_n| \rightarrow 1/5)$.

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

Converges conditionally by the alternating series test.

test.

(e)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

Diverges by the integral

(f)
$$\sum_{n=1}^{\infty} \ln\left(\frac{n}{3n+1}\right)$$

Diverges by the divergence test $(a_n \to \ln(1/3))$.

(g)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+1}$$

Converges conditionally by the alternating series test.

(h)
$$\sum_{n=1}^{\infty} \frac{\cos(3n)}{1+(1.2)^n}$$

 $\sum_n |a_n|$ converges by direct comparison to $\sum_n (1/1.2)^n,$ a convergent geometric series.

(i)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{5^n n!}$$

Conveges by the ratio test $(|a_{n+1}/a_n| \rightarrow 2/5)$.

(j) $\sum_{n=1}^{\infty} \left(\frac{1+n}{3n}\right)^n$

Converges by limit comparison to $\sum_{n} (1/3)^n$ or by the ratio test $(|a_{n+1}/a_n| \to 1/3)$.

(k)
$$\sum_{n=1}^{\infty} \frac{n^n}{(2n+1)!}$$

Converges by the ratio test $(|a_{n+1}/a_n| \to 0).$

(1)
$$\sum_{n=1}^{\infty} \frac{8^n}{n!}$$

Converges by the ratio test $(|a_{n+1}/a_n| \to 0)$.

(m)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^n}{n^2}$$

Diverges by the divergence test.

(n)
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$$

Converges conditionally by the alternating series test $(\cos(n\pi) = (-1)^n)$.

(o)
$$\sum_{n=1}^{\infty} \frac{\tan(1/n)}{n^{3/2}}$$

Converges by direct comparison to $(\pi/4) \sum_{n} n^{-3/2}$ or by limit comparison to $\sum_{n} 1$

 $\sum_{n} 1/n^{5/2}$ n $(\tan(x) \approx x \text{ for } x \text{ small}).$

(p)
$$\sum_{\substack{n=1\\ \infty}}^{\infty} \frac{(-1)^n}{2+\sin n}$$

Diverges by the divergence test.

(q)
$$\sum_{n=1}^{\infty} \sin(1/n^2)$$

Converges by limit comparison to $\sum_n 1/n^2$.

(r)
$$\sum_{n=1}^{n} (-1)^n \cos(1/n^2)$$

Diverges by the divergence test.

(s)
$$\sum_{n=1}^{\infty} 2^{-\ln n}$$

Diverges. This is a *p*-series in disguise, $2^{-\ln n} = 1/n^{\ln 2}$, $p = \ln 2 < 1$.

(t)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

Converges by the integral test.

- 2. (a) The sum is $-\ln 2$ (the *N*th partial sum is $-\ln 2 + \ln(1 + 1/N)$).
 - (b) The sum is 11/45 (the sum of two geometric series).
- 3. (a) $N \ge 22027$ suffices.
 - (b) $N \ge e^{e^{10}} 1 \approx 9.38 \times 10^{9565}$