1. Determine whether the following series converge or diverge. If a series converges and the terms are not eventually positive, determine whether or not the convergence is absolute

(a)
$$\sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$$

Converges by direct comparison to $\sum_{n} \frac{1}{n^2}$. We have

$$0 \leq \frac{n}{n^3+1} = \frac{1}{n^2+1/n} \leq \frac{1}{n^2}$$

and
$$\sum_{n} \frac{1}{n^2}$$
 is a convergent *p*-series, $p = 2 > 1$.
 $\sum_{n=1}^{\infty} n^2 + 1$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{n^3 + 1}$$

Diverges by limit comparison to $\sum_{n = \frac{1}{n}} \frac{1}{n}$. We have positive terms 1/n, $\frac{n^2+1}{n^3+1}$ and

$$\lim_{n \to \infty} \frac{1/n}{(n^2 + 1)/(n^3 + 1)} = \lim_{n \to \infty} \frac{n^3 + 1}{n^3 + n} = \lim_{n \to \infty} \frac{1 + 1/n^3}{1 + 1/n^2} = 1$$

Therefore the sum in question diverges because $\sum_{n} 1/n$ diverges (harmonic series, p-series, $p = 1 \le 1$).

(c)
$$\sum_{n=1}^{\infty} \frac{n^3}{5^n}$$

Converges by the ratio test $(|a_{n+1}/a_n| \rightarrow 1/5)$. We have

$$\lim_{n \to \infty} \frac{(n+1)^3 / 5^{n+1}}{n^3 / 5^n} = \lim_{n \to \infty} \frac{(1+1/n)^3}{5} = 1/5 < 1$$

(d) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$

Converges conditionally by the alternating series test. First note that the series does not converge absolutely

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt{n+1}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}} = \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}},$$

a divergent *p*-series (p = 1/2 < 1).

However, the series is of the form $\sum_{n}(-1)^{n}b_{n}$ with $b_{n}=1/\sqrt{n+1}$ and

$$0 < b_n, \lim_{n \to \infty} b_n = 0, \sqrt{n+1} > \sqrt{n} \Rightarrow \frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}}, \text{ i.e. } b_n \ge b_{n+1}.$$

Hence the series converges by the alternating series test.

(e)
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

Diverges by the integral test. The function $f(x) = \frac{1}{x(\ln x)^{1/2}}$ is positive and continuous on $(1, \infty)$, and is decreasing on $(1, \infty)$ since both x and $\sqrt{\ln x}$ are both increasing there. We have

$$\int_{2}^{\infty} \frac{dx}{x\sqrt{\ln x}} = \lim_{T \to \infty} \int_{2}^{T} \frac{dx}{x\sqrt{\ln x}} = \lim_{T \to \infty} \int_{\ln 2}^{\ln T} \frac{du}{\sqrt{u}} = 2\sqrt{u}\Big|_{\ln 2}^{\ln T} = \infty,$$

so that the series also diverges.

(f)
$$\sum_{n=1}^{\infty} \ln\left(\frac{n}{3n+1}\right)$$

Diverges by the divergence test $(a_n \to \ln(1/3))$. We have

$$\lim_{n \to \infty} \ln\left(\frac{n}{3n+1}\right) = \ln\left(\lim_{n \to \infty} \frac{n}{3n+1}\right) = \ln\left(\lim_{n \to \infty} \frac{1}{3+1/n}\right) = \ln(1/3) \neq 0.$$

(g) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+1}$

Converges conditionally by the alternating series test. Note that the series does not converge absolutely, say by limit comparison to $\sum_{n} 1\sqrt{n}$:

$$\frac{\sqrt{n}}{n+1}/(1/\sqrt{n}) = \frac{n}{n+1} \to 1 \text{ as } n \to \infty$$

and $\sum_{n} 1/\sqrt{n}$ diverges (*p*-series, p = 1/2 < 1). However, the series is alternating, $\sum_{n} (-1)^{n} b_{n}$ with $b_{n} = \frac{\sqrt{n}}{n+1}$:

$$b_n > 0$$
, $\lim_{n \to \infty} b_n = 0$,

and

$$\frac{\sqrt{n}}{n+1} \ge \frac{\sqrt{n+1}}{n+2} \Longleftrightarrow \left(\frac{n+2}{n+1}\right)^{3/2} = \left(1 + \frac{1}{n+1}\right)^{3/2} \ge 1,$$

so that b_n is decreasing. Hence the series converges by the alternating series test.

(h)
$$\sum_{n=1}^{\infty} \frac{\cos(3n)}{1+(1.2)^n}$$
$$\sum_n |a_n| \text{ convergence}$$

 $\sum_{n} |a_n|$ converges by direct comparison to $\sum_{n} (1/1.2)^n$, a convergent geometric series. We have

$$0 \le \left| \frac{\cos(3n)}{1 + (1.2)^n} \right| \le \frac{1}{(1.2)^n}$$

and $\sum_{n}(1/1.2)^n$ converges (common ratio r = 1/1.2 satisfies |r| < 1).

(i)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{5^n n!}$$

Conveges by the ratio test $(|a_{n+1}/a_n| \rightarrow 2/5)$. We have

$$\left|\frac{1\cdot 3\cdot 5\cdot \cdots \cdot (2(n+1)-1)}{5^{n+1}(n+1)!}\frac{5^n n!}{1\cdot 3\cdot 5\cdot \cdots \cdot (2n-1)}\right| = \frac{2n+1}{5(n+1)} \to \frac{2}{5} < 1.$$

(j)
$$\sum_{n=1}^{\infty} \left(\frac{1+n}{3n}\right)^n$$

Converges by limit comparison to $\sum_{n}(1/3)^n$. We have

$$\lim_{n \to \infty} \frac{(1/3)^n}{(\frac{1+n}{3n})^n} = \lim_{n \to \infty} \left(\frac{3n}{3n+3}\right)^n = \lim_{n \to \infty} \left(\frac{1}{1+1/n}\right)^n = 1/e,$$

so the series in question converges by limit comparison.

(k)
$$\sum_{n=1}^{\infty} \frac{n^n}{(2n+1)!}$$

Converges by the ratio test $(|a_{n+1}/a_n| \to 0)$. We have

$$\frac{(n+1)^{n+1}}{(2(n+1)+1)!}\frac{(2n+1)!}{n^n} = \frac{n+1}{(2n+3)(2n+2)}(1+1/n)^n \to 0 \cdot e = 0 < 1.$$

(1)
$$\sum_{n=1}^{\infty} \frac{8^n}{n!}$$

Converges by the ratio test $(|a_{n+1}/a_n| \to 0)$. We have

$$\frac{8^{n+1}}{(n+1)!}\frac{n!}{8^n} = \frac{8}{n+1} \to 0 < 1.$$

(m)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^n}{n^2}$$

Diverges by the divergence test, $2^n/n^2 \to \infty$. $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{2}$

(n)
$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$$

Converges conditionally by the alternating series test $(\cos(n\pi) = (-1)^n)$. We have

$$\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n},$$

which converges by the alternating series test (0 < 1/n decreases to zero). The convergence is conditional since $\sum_n 1/n$ diverges (harmonic series, *p*-series, $p = 1 \le 1$).

(o)
$$\sum_{n=1}^{\infty} \frac{\tan(1/n)}{n^{3/2}}$$

Converges by direct comparison to $(\pi/4) \sum_n n^{-3/2}$ or by limit comparison to $\sum_n 1/n^{5/2}$ $(\tan(x) \approx x \text{ for } x \text{ small})$. Details omitted.

(p)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2+\sin n}$$

Diverges by the divergence test, since $1 \le 2 + \sin(n) \le 3$.

(q) $\sum_{n=1}^{\infty} \sin(1/n^2)$

Converges by limit comparison to $\sum_{n} 1/n^2$. We have positive terms $\sin(1/n^2)$, $1/n^2$ and

$$\lim_{n \to \infty} \frac{\sin(1/n^2)}{1/n^2} = \lim_{x \to 0^+} \frac{\sin x}{x} = 1.$$

The series $\sum_{n} 1/n^2$ is a convergent *p*-series (p = 2 > 1), so the series in question converges as well.

(r) $\sum_{n=1}^{\infty} (-1)^n \cos(1/n^2)$

Diverges by the divergence test. We have

$$\lim_{n \to \infty} \cos(1/n^2) = \cos(\lim_{n \to \infty} 1/n^2) = \cos(0) = 1.$$

(s) $\sum_{n=1}^{\infty} 2^{-\ln n}$

Diverges. This is a *p*-series in disguise, $2^{-\ln n} = 1/n^{\ln 2}$, $p = \ln 2 < 1$.

(t)
$$\sum_{n=1}^{\infty} n e^{-n^2}$$

Converges by the integral test. The function $f(x) = xe^{-x^2}$ is positive and continuous on $(0, \infty)$ and decreasing on $[1, \infty)$ because

$$f'(x) = x(-2xe^{-x^2}) + e^{-x^2} = e^{-x^2}(1-2x^2) < 0$$
 for $x > 1/\sqrt{2}$.

By the integral test, the series converges if and only if the improper integral $\int_1^\infty f(x)dx$ converges. We have

$$\int_{1}^{\infty} x e^{-x^{2}} dx = \lim_{T \to \infty} \int_{1}^{T} x e^{-x^{2}} dx = \lim_{T \to \infty} \frac{1}{2} \int_{1}^{T^{2}} e^{-u} du = \frac{1}{2} \lim_{T \to \infty} \left(e^{-1} - e^{-T^{2}} \right) = \frac{1}{2e}$$

and the series converges.

2. Find the values of the following series telescoping or geometric series.

(a)
$$\sum_{n=2}^{\infty} \ln\left(1 - \frac{1}{n^2}\right)$$

The sum is $-\ln 2$. We have
$$\sum_{n=2}^{N} \ln(1 - 1/n^2) = \sum_{n=2}^{N} \ln\left(\frac{(n-1)(n+1)}{n^2}\right) = \sum_{n=2}^{N} [\ln(n+1) + \ln(n-1) - 2\ln n]$$
$$= [\ln 3 + \ln 2 - 2\ln 2] + [\ln 4 + \ln 2 - 2\ln 3] + [\ln 5 + \ln 3 - 2\ln 4] + \dots + [\ln N + \ln(N-2) - 2\ln(N-1)] + [\ln(N+1) + \ln(N-1) - 2\ln N]$$
$$= -\ln 2 + \ln(N+1) - \ln N = -\ln 2 + \ln(1 + 1/N) \to -\ln 2.$$

(b)
$$\sum_{n=4}^{\infty} \frac{5 \cdot 2^{n-3} + 2 \cdot 3^{n-5}}{3 \cdot 5^{n-2}}$$

The sum is 11/45 (the sum of two geometric series). We have

$$\sum_{n=4}^{\infty} \frac{5 \cdot 2^{n-3} + 2 \cdot 3^{n-5}}{3 \cdot 5^{n-2}} = \sum_{n=4}^{\infty} \frac{5 \cdot 2^{n-3}}{3 \cdot 5^{n-2}} + \sum_{n=4}^{\infty} \frac{2 \cdot 3^{n-5}}{3 \cdot 5^{n-2}} = \frac{2/15}{1 - 2/5} + \frac{2/225}{1 - 3/5} = 11/45,$$

recalling that the sum of a geometric series $\sum_{n=0}^{\infty} ar^n$ is given by $\frac{a}{1-r}$ where a is the first term of the series and r is the common ratio.

3. Use the integral or alternating series test remainder estimate for the following problems, first showing that the series in question actually converges.

(a) How many terms N of the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$ can we use to guarantee the remainder

$$R_N = \sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} - \sum_{n=2}^{N} \frac{1}{n(\ln n)^2}$$

is less than 0.1?

The series converges by the integral test, $\frac{1}{n(\ln n)^2} = f(n)$ where $f(x) = \frac{1}{x(\ln x)^2}$. The function is positive and decreasing for x > 1 so the series converges if and only if the associated improper integral converges

$$\int_{2}^{\infty} \frac{dx}{x(\ln x)^{2}} = \int_{\ln 2}^{\infty} \frac{du}{u^{2}} = \ln 2.$$

The remainder R_N satisfies

$$\int_{N+1}^{\infty} f(x)dx \le R_N \le \int_N^{\infty} f(x)dx$$

so the remainder R_N will be less than 0.1 if

$$\int_{N}^{\infty} \frac{dx}{x(\ln x)^2} = 1/\ln N \le 1/10 \iff N \ge e^{10} = 22026.46579\dots,$$

so that $N \ge 22027$ suffices.

(b) How many terms N of the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(\ln n)}$ can we use to guarantee the remainder

$$R_N = \sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(\ln n)} - \sum_{n=2}^{N} \frac{(-1)^n}{\ln(\ln n)}$$

is less than 0.1?

The series is convergent by the alternating series test since, $b_n = 1/\ln(\ln n) > 0$, $\lim_{n\to\infty} b_n = 0$, and

$$b_n = \frac{1}{\ln(\ln(n))} \ge \frac{1}{\ln(\ln(n+1))} (\text{clear})$$

Hence the remainder satisfies $|R_N| \le b_{N+1} = 1/\ln(\ln(N+1))$. So the absolute value of the remainder $|R_N|$ will be less than 0.1 if

$$\frac{1}{\ln(\ln(N+1))} \le \frac{1}{10} \iff e^{e^{10}} \le N+1,$$

so any $N \ge e^{e^{10}} - 1 \approx 9.38 \times 10^{9565}$ will suffice (that's a lot of terms...).