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1. Determine whether the following series converge or diverge. If a series converges and the
terms are not eventually positive, determine whether or not the convergence is absolute

(a)
∞∑
n=1

n

n3 + 1

Converges by direct comparison to
∑
n

1

n2
. We have

0 ≤ n

n3 + 1
=

1

n2 + 1/n
≤ 1

n2

and
∑
n

1

n2
is a convergent p-series, p = 2 > 1.

(b)
∞∑
n=1

n2 + 1

n3 + 1

Diverges by limit comparison to
∑

n
1
n . We have positive terms 1/n, n2+1

n3+1
and

lim
n→∞

1/n

(n2 + 1)/(n3 + 1)
= lim

n→∞

n3 + 1

n3 + n
= lim

n→∞

1 + 1/n3

1 + 1/n2
= 1.

Therefore the sum in question diverges because
∑

n 1/n diverges (harmonic series,
p-series, p = 1 ≤ 1).

(c)
∞∑
n=1

n3

5n

Converges by the ratio test (|an+1/an| → 1/5). We have

lim
n→∞

(n+ 1)3/5n+1

n3/5n
= lim

n→∞

(1 + 1/n)3

5
= 1/5 < 1.

(d)

∞∑
n=1

(−1)n√
n+ 1

Converges conditionally by the alternating series test. First note that the series does
not converge absolutely

∞∑
n=1

∣∣∣∣ (−1)n√
n+ 1

∣∣∣∣ =

∞∑
n=1

1√
n+ 1

=
∞∑
n=2

1√
n
,

a divergent p-series (p = 1/2 < 1).

However, the series is of the form
∑

n(−1)nbn with bn = 1/
√
n+ 1 and

0 < bn, lim
n→∞

bn = 0,
√
n+ 1 >

√
n⇒ 1√

n+ 1
<

1√
n
, i.e. bn ≥ bn+1.

Hence the series converges by the alternating series test.



(e)

∞∑
n=2

1

n
√

lnn

Diverges by the integral test. The function f(x) =
1

x(lnx)1/2
is positive and continu-

ous on (1,∞), and is decreasing on (1,∞) since both x and
√

lnx are both increasing
there. We have∫ ∞

2

dx

x
√

lnx
= lim

T→∞

∫ T

2

dx

x
√

lnx
= lim

T→∞

∫ lnT

ln 2

du√
u

= 2
√
u
∣∣∣lnT

ln 2
=∞,

so that the series also diverges.

(f)
∞∑
n=1

ln

(
n

3n+ 1

)
Diverges by the divergence test (an → ln(1/3)). We have

lim
n→∞

ln

(
n

3n+ 1

)
= ln

(
lim
n→∞

n

3n+ 1

)
= ln

(
lim
n→∞

1

3 + 1/n

)
= ln(1/3) 6= 0.

(g)

∞∑
n=1

(−1)n−1
√
n

n+ 1

Converges conditionally by the alternating series test. Note that the series does not
converge absolutely, say by limit comparison to

∑
n 1
√
n:

√
n

n+ 1
/(1/
√
n) =

n

n+ 1
→ 1 as n→∞,

and
∑

n 1/
√
n diverges (p-series, p = 1/2 < 1). However, the series is alternating,∑

n(−1)nbn with bn =
√
n

n+1 :

bn > 0, lim
n→∞

bn = 0,

and √
n

n+ 1
≥
√
n+ 1

n+ 2
⇐⇒

(
n+ 2

n+ 1

)3/2

=

(
1 +

1

n+ 1

)3/2

≥ 1,

so that bn is decreasing. Hence the series converges by the alternating series test.

(h)

∞∑
n=1

cos(3n)

1 + (1.2)n∑
n |an| converges by direct comparison to

∑
n(1/1.2)n, a convergent geometric se-

ries. We have

0 ≤
∣∣∣∣ cos(3n)

1 + (1.2)n

∣∣∣∣ ≤ 1

(1.2)n

and
∑

n(1/1.2)n converges (common ratio r = 1/1.2 satisfies |r| < 1).

(i)

∞∑
n=1

1 · 3 · 5 · · · · · (2n− 1)

5nn!

Conveges by the ratio test (|an+1/an| → 2/5). We have∣∣∣∣1 · 3 · 5 · · · · · (2(n+ 1)− 1)

5n+1(n+ 1)!

5nn!

1 · 3 · 5 · · · · · (2n− 1)

∣∣∣∣ =
2n+ 1

5(n+ 1)
→ 2

5
< 1.



(j)

∞∑
n=1

(
1 + n

3n

)n

Converges by limit comparison to
∑

n(1/3)n. We have

lim
n→∞

(1/3)n

(1+n
3n )n

= lim
n→∞

(
3n

3n+ 3

)n

= lim
n→∞

(
1

1 + 1/n

)n

= 1/e,

so the series in question converges by limit comparison.

(k)
∞∑
n=1

nn

(2n+ 1)!

Converges by the ratio test (|an+1/an| → 0). We have

(n+ 1)n+1

(2(n+ 1) + 1)!

(2n+ 1)!

nn
=

n+ 1

(2n+ 3)(2n+ 2)
(1 + 1/n)n → 0 · e = 0 < 1.

(l)

∞∑
n=1

8n

n!

Converges by the ratio test (|an+1/an| → 0). We have

8n+1

(n+ 1)!

n!

8n
=

8

n+ 1
→ 0 < 1.

(m)
∞∑
n=1

(−1)n−12n

n2

Diverges by the divergence test, 2n/n2 →∞.

(n)
∞∑
n=1

cos(nπ)

n

Converges conditionally by the alternating series test (cos(nπ) = (−1)n). We have

∞∑
n=1

cos(nπ)

n
=

∞∑
n=1

(−1)n

n
,

which converges by the alternating series test (0 < 1/n decreases to zero). The
convergence is conditional since

∑
n 1/n diverges (harmonic series, p-series, p = 1 ≤

1).

(o)
∞∑
n=1

tan(1/n)

n3/2

Converges by direct comparison to (π/4)
∑

n n
−3/2 or by limit comparison to

∑
n 1/n5/2

(tan(x) ≈ x for x small). Details omitted.

(p)

∞∑
n=1

(−1)n

2 + sinn

Diverges by the divergence test, since 1 ≤ 2 + sin(n) ≤ 3.



(q)

∞∑
n=1

sin(1/n2)

Converges by limit comparison to
∑

n 1/n2. We have positive terms sin(1/n2), 1/n2

and

lim
n→∞

sin(1/n2)

1/n2
= lim

x→0+

sinx

x
= 1.

The series
∑

n 1/n2 is a convergent p-series (p = 2 > 1), so the series in question
converges as well.

(r)

∞∑
n=1

(−1)n cos(1/n2)

Diverges by the divergence test. We have

lim
n→∞

cos(1/n2) = cos( lim
n→∞

1/n2) = cos(0) = 1.

(s)

∞∑
n=1

2− lnn

Diverges. This is a p-series in disguise, 2− lnn = 1/nln 2, p = ln 2 < 1.

(t)
∞∑
n=1

ne−n
2

Converges by the integral test. The function f(x) = xe−x
2

is positive and continuous
on (0,∞) and decreasing on [1,∞) because

f ′(x) = x(−2xe−x
2
) + e−x

2
= e−x

2
(1− 2x2) < 0 for x > 1/

√
2.

By the integral test, the series converges if and only if the improper integral
∫∞
1 f(x)dx

converges. We have∫ ∞
1

xe−x
2
dx = lim

T→∞

∫ T

1
xe−x

2
dx = lim

T→∞

1

2

∫ T 2

1
e−udu =

1

2
lim
T→∞

(
e−1 − e−T 2

)
=

1

2e
,

and the series converges.

2. Find the values of the following series telescoping or geometric series.

(a)

∞∑
n=2

ln

(
1− 1

n2

)
The sum is − ln 2. We have

N∑
n=2

ln(1− 1/n2) =

N∑
n=2

ln

(
(n− 1)(n+ 1)

n2

)
=

N∑
n=2

[ln(n+ 1) + ln(n− 1)− 2 lnn]

= [ln 3 + ln 2− 2 ln 2] + [ln 4 + ln 2− 2 ln 3] + [ln 5 + ln 3− 2 ln 4]+

. . .+ [lnN + ln(N − 2)− 2 ln(N − 1)] + [ln(N + 1) + ln(N − 1)− 2 lnN ]

= − ln 2 + ln(N + 1)− lnN = − ln 2 + ln(1 + 1/N)→ − ln 2.



(b)

∞∑
n=4

5 · 2n−3 + 2 · 3n−5

3 · 5n−2

The sum is 11/45 (the sum of two geometric series). We have

∞∑
n=4

5 · 2n−3 + 2 · 3n−5

3 · 5n−2
=

∞∑
n=4

5 · 2n−3

3 · 5n−2
+

∞∑
n=4

2 · 3n−5

3 · 5n−2
=

2/15

1− 2/5
+

2/225

1− 3/5
= 11/45,

recalling that the sum of a geometric series
∑∞

n=0 ar
n is given by a

1−r where a is the
first term of the series and r is the common ratio.

3. Use the integral or alternating series test remainder estimate for the following problems,
first showing that the series in question actually converges.

(a) How many terms N of the series
∞∑
n=2

1

n(lnn)2
can we use to guarantee the remainder

RN =

∞∑
n=2

1

n(lnn)2
−

N∑
n=2

1

n(lnn)2

is less than 0.1?

The series converges by the integral test, 1
n(lnn)2

= f(n) where f(x) = 1
x(lnx)2

. The

function is positive and decreasing for x > 1 so the series converges if and only if the
associated improper integral converges∫ ∞

2

dx

x(lnx)2
=

∫ ∞
ln 2

du

u2
= ln 2.

The remainder RN satisfies∫ ∞
N+1

f(x)dx ≤ RN ≤
∫ ∞
N

f(x)dx

so the remainder RN will be less than 0.1 if∫ ∞
N

dx

x(lnx)2
= 1/ lnN ≤ 1/10⇐⇒ N ≥ e10 = 22026.46579 . . . ,

so that N ≥ 22027 suffices.

(b) How many terms N of the series
∞∑
n=2

(−1)n

ln(lnn)
can we use to guarantee the remainder

RN =

∞∑
n=2

(−1)n

ln(lnn)
−

N∑
n=2

(−1)n

ln(lnn)

is less than 0.1?

The series is convergent by the alternating series test since, bn = 1/ ln(lnn) > 0,
limn→∞ bn = 0, and

bn =
1

ln(ln(n))
≥ 1

ln(ln(n+ 1))
(clear).



Hence the remainder satisfies |RN | ≤ bN+1 = 1/ ln(ln(N +1)). So the absolute value
of the remainder |RN | will be less than 0.1 if

1

ln(ln(N + 1))
≤ 1

10
⇐⇒ ee

10 ≤ N + 1,

so any N ≥ ee10 − 1 ≈ 9.38× 109565 will suffice (that’s a lot of terms...).


