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1. Determine whether the following series converge or diverge. If a series converges and the
terms are not eventually positive, determine whether or not the convergence is absolute
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Therefore the sum in question diverges because ), 1/n diverges (harmonic series,
p-series, p =1 < 1).

00
n3

(c) Z mn
Converges by the ratio test (|an+1/an| — 1/5). We have
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Converges conditionally by the alternating series test. First note that the series does
not converge absolutely

a divergent p-series (p =1/2 < 1).
However, the series is of the form ), (—1)"b, with b, =1/v/n+1 and
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Hence the series converges by the alternating series test.
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Diverges by the integral test. The function f(x) = is positive and continu-
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ous on (1, 00), and is decreasing on (1, c0) since both  and v/In x are both increasing
there. We have

*  dx . T dx . InT du InT
= lim ———— = lim — =2Vu = 00,
o zvInz T-ooo)y zvInz T—oo g Vu In2

so that the series also diverges.
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D1verges by the divergence test (a,, — In(1/3)). We have
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Converges conditionally by the alternating series test. Note that the series does not
converge absolutely, say by limit comparison to >, 1y/n:
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and ), 1/y/n diverges (p-series, p = 1/2 < 1). However, the series is alternating,
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so that b, is decreasing. Hence the series converges by the alternating series test.
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and ), (1/1.2)" converges (common ratio r = 1/1.2 satisfies |r| < 1).
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Conveges by the ratio test (|an+1/an| — 2/5). We have
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Converges by limit comparison to ), (1/3)". We have
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so the series in question converges by limit comparison.
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Converges by the ratio test (|an+1/an| — 0). We have
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Converges by the ratio test (Jap+1/an| — 0). We have
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Diverges by the divergence test, 2"/n? — oc.
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Converges conditionally by the alternating series test (cos(nmw) = (—1)"). We have
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which converges by the alternating series test (0 < 1/n decreases to zero). The
convergence is conditional since ) 1/n diverges (harmonic series, p-series, p =1 <

1).
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Converges by direct comparison to (7/4) 3", n~3/2 or by limit comparison to 3, 1/n°/?
(tan(x) ~ x for x small). Details omitted.
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Diverges by the divergence test, since 1 < 2+ sin(n) < 3.
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Converges by limit comparison to ., 1/n% We have positive terms sin(1/n?), 1/n?

and
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The series >, 1/n? is a convergent p-series (p = 2 > 1), so the series in question
converges as well.
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Diverges by the divergence test. We have
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Diverges. This is a p-series in disguise, 27" = 1/n1n2, p=In2<1.
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Converges by the integral test. The function f(z) = ze™
on (0,00) and decreasing on [1,00) because
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f'(z) = a:(—2xefx2) +e ¥ = 67‘%2(1 —22%) <0 forz > 1/V2.

By the integral test, the series converges if and only if the improper integral || 100 f(z)dx
converges. We have

© T 1T 1 1
/ re T dr = lim re ¥ dr = lim / e “du == lim (e_l —e ) = —,
1 T—o0 Jq T—oo 2 Jq 2 T—oo 2e

and the series converges.

2. Find the values of the following series telescoping or geometric series.
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The sum is —In 2. We have
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The sum is 11/45 (the sum of two geometric series). We have

o0 o0 [e.o]
5.9n—=3 4 9. 3n—>5 5. 9on—3 2.3n-5 2/15 2/225
S S Y S - st s =
3. 502 3. 502 3-5"2  1-2/5 1-3/5

recalling that the sum of a geometric series ) 2 ar™ is given by - where a is the
first term of the series and r is the common ratio.

3. Use the integral or alternating series test remainder estimate for the following problems,
first showing that the series in question actually converges.
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The series converges by the integral test, m = f(n) where f(x) = m The
function is positive and decreasing for > 1 so the series converges if and only if the
associated improper integral converges
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The series is convergent by the alternating series test since, b, = 1/In(Inn) > 0,
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(clear).



Hence the remainder satisfies |Ry| < by4+1 = 1/In(In(INV +1)). So the absolute value
of the remainder |Ry| will be less than 0.1 if
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soany N > e — 1~ 9.38 x 109965 will suffice (that’s a lot of terms...).



