MATH 2300-015 QUIZ 3 Name:

Due Tuesday, September 19th at the beginning of class. Please use additional
paper as necessary to submit CLEAR and COMPLETE solutions.
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1. For which values of p does / ﬁ converge/diverge? Find the value of the
e z(lnx

improper integral when it is convergent.

If p # 1 we have
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which is p%l ifp>1and coif p<1. For p =1 we get tlim In(Int) = oo and the integral
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diverges as well. In summary
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2. For what values of p does the improper integral / - converge?
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For p # 1 we have
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which is ﬁ if p<1andooifp>1. For p=1 we get lim+ —Int = oo and the integral
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converges by comparison. Second, find the value of the

diverges as well. In summary

o0
3. First, show that / 3
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improper integral. (You should get %)

For instance, we can compare < %3 on [1,00) so that
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As for the actual value, we use partial fractions:
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Hence the improper integral is
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In the last line we are using the limit
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. Find the value of C for which the following improper integral converges and evaluate the

integral for this value of C:
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[Note that the integral of each summand separately is divergent, but the right choice of
C gives “cancellation” and a convergent integral.]

The integral is (with = 2 tan @ integrating the first summand)
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Now we see that C' = 1 is the only possibility, else 5&2;";)‘2’5 goes to 0 or oo as t — oo and

the logarithm will diverge. For C' = 1, the value of the integral is In 2.




5. Recall Simpson’s rule for approximating a definite integral:

b
/ f(z)dx = S, = A;(f(ﬂfo) +4f(x1) +2f(x2) + -+ 2f (xn—2) + 4f (Tp—1) + f(20)),

where
a
Ax=—— x; =a+iAzx, n even.
n
(This estimate is obtained by approximating f piecewise on [zak, Tokt2] by the unique

quadratic through the three points (xog, f(zar)), (zok+1, f(2k+1)), and
(xok+2, f(x2p42)). Cf. pp. 406-410 of the text.)

A bound for the error ,
Eg := / f(z)dz — Sy,
is given by
K(b—a)®
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where K is any bound for the fourth derivative of f on the interval [a, b],

K > |fD(2)], x € [a,b].

|Eg| <

Using the above, find a value of n large enough to guarantee |Es| < 1075 when
approximating the integral
1
/ e da.
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[Note: A computer gives f*) () = 4 (42* — 1222 + 3) when f(z) = e~ . Use the
methods of Calc 1 to find the max/min of the fourth derivative on the interval [0, 1], and
use this to determine a value for K]

First we bound f®(z) on [0,1] where f(z) = ¢=*". We have
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3 = (4% — 2)(—2%6_:62) + e_x2(8x) = 6_362(—8.%'3 + 12x)
FO = —2pe " (=827 4+ 122) + e (=242 + 12) = de ¥ (42t — 1222 + 3)
FO) = —2ze %" (162 — 4822 + 12) + e *"(642° — 96z) = —8we ¥ (4 — 2022 + 15).

The fifth derivative has zeros at x = 0 and

2041202 —4-4-1 54+ /1
422022415 =0 & 22 = 0 0 S r— 5270:12.021...,i0.958...
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We find the absolute max/min of ) on [0,1] by testing the value of f(*) at critical
points and the endpoints

F90) =12, fM1)=-20/e=-7.357... f@ 5_2*/E =—7.419....



Hence we can take |f®*)(z)] <12 = K on [0,1]. With this value of K and a = 0,b =1

the error bound is
K(b—a)® 1
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Now, if we want |Eg| < 1075, we can take the smallest even n satisfying

|Eg| <

L 1076
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Solving for n gives
n > (10°/15)"4 = 16.06. . ..

Therefore we take n = 18 (the smallest even integer greater than 16.06...).



