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1. Match the slope fields below (labeled I, II, III, IV) with the differential equations below.

I -2 -1 0 1 2
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III -2 -1 0 1 2
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IV -2 -1 0 1 2
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I
dy

dx
= x2

III
dy

dx
= y − y2

IV
dy

dx
= x2 − y2

II
dy

dx
= xy − y



2. Use Euler’s method with step size 1/2 to approximate y(2) where y is a solution of the
initial value problem

y′ = x− y, y(0) = 1,

filling in the information in the table below.

n xn yn y′(xn)

0 0 1 0-1
=-1

1 1/2 1-1/2 1/2-1/2
=1/2 =0

2 1 1/2+0 1-1/2
=1/2 =1/2

3 3/2 1/2+1/4 3/2-3/4
=3/4 =3/4

4 2 3/4+3/8
=9/8

Hence y(2) ≈ 9/8.



3. Using Taylor’s inequality, show that the nth degree Taylor polynomial for cosx
converges to cosx as n→∞, i.e. show that cosx is equal to its Taylor series for all x.

Let f(x) = cosx. Then f (n+1)(x) = ± cosx,± sinx so that |f (n+1)(x)| ≤ 1 for any x.
Taylor’s inequality states that

|Rn(x)| = |f(x)− Tn(x)| ≤ M

(n + 1)!
|x|n+1

where M is an upper bound for |f (n+1)| on the interval between 0 and x. We can take
M = 1 for every n so that for any fixed x we have

0 ≤ lim
n→∞

|Rn(x)| ≤ lim
n→∞

|x|n+1

(n + 1)!
= 0,

showing that the Taylor series lim
n→∞

Tn(x) converges to f(x).

Below are Tn, 0 ≤ n ≤ 11 (red, orange, yellow, green, blue, violet, note that
T2n = T2n+1) and cosx (black).
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1. In this problem, you will show that Euler’s method converges to an actual solution of
the initial value problem below as you take smaller and smaller step sizes.

(a) Use Euler’s method to obtain an estimate En(x) of the solution to

y′ = y, y(0) = 1,

at x by breaking up the interval between 0 and x into n equal pieces.

We have step size x/n so that after n steps, we reach x. The first few iterations are

x0 = 0, y0 = 1
x1 = x/n, y1 = 1 + x/n
x2 = 2x/n, y2 = (1 + x/n) + (1 + x/n)x/n = (1 + x/n)2

x3 = 3x/n, y3 = (1 + x/n)2 + (1 + x/n)2x/n = (1 + x/n)3

. . . . . .
xn = nx/n = x, yn = (1 + x/n)n = En(x).

(b) Find the limit as n approaches infinity in your previous answer, i.e. find

E(x) := lim
n→∞

En(x).

We have
E(x) := lim

n→∞
En(x) = lim

n→∞
(1 + x/n)n = ex,

(taking logarithms and applying l’Hopital’s rule for instance).

(c) Show that the limit E(x) above satisfies the initial value problem.

E(x) = ex satisfies E′ = E and E(0) = 1 so it solves the initial value problem.

2. Solve the following initial value problem using power series

y′′ + y = 0, y(0) = 0, y′(0) = 1,

i.e. assume y =
∞∑
n=0

cnx
n is a solution and solve for the cn recursively.

If y =

∞∑
n=0

cnx
n, then

y′′ =
∞∑
n=0

n(n− 1)cnx
n−2 =

∞∑
n=0

(n + 2)(n + 1)cn+2x
n,

and we are trying to solve

0 = y′′ + y =

∞∑
n=2

(n + 2)(n + 1)cn+2x
n +

∞∑
n=0

cnx
n =

∞∑
n=2

[(n + 2)(n + 1)cn+2 + cn]xn,



subject to y(0) = 0, y′(0) = 1. For the above to hold, all of the coefficients
(n + 2)(n + 1)cn+2 + cn must be zero, and the initial conditions give us c0 = 0, c1 = 1.
Hence

0 = (0 + 2)(0 + 1)c0+2 + c0, c2 =
−c0
2 · 1

= 0,

0 = (1 + 2)(1 + 1)c1+2 + c1, c3 =
−c1
3 · 2

=
−1

3!
,

0 = (2 + 2)(2 + 1)c2+2 + c2, c4 =
−c2
4 · 3

= 0,

0 = (3 + 2)(3 + 1)c3+2 + c3, c5 =
−c3
5 · 4

=
1

5!
,

0 = (4 + 2)(4 + 1)c4+2 + c4, c6 =
−c4
6 · 5

= 0,

. . . ,

0 = (n + 2)(n + 1)cn+2 + cn, cn+2 =
−cn

(n + 2)(n + 1)
= 0 or

(−1)n

n!
.

The resulting series is
∞∑
n=0

(−1)n

(2n + 1)!
x2n+1 which we recognize as sinx.

More generally, the relation cn+2 =
−cn

(n + 2)(n + 1)
give us

c2k =
(−1)kc0

(2k)!
, c2k+1 =

(−1)kc1
(2k + 1)!

,

so that the general solution to y′′ + y = 0 is

y(x) = c0

∞∑
k=0

(−1)kx2k

(2k)!
+ c1

(−1)kx2k+1

(2k + 1)!
= c0 cosx + c1 sinx.


