1. What are the possible intervals of convergence for a general power series $\sum_{n=0}^{\infty} c_n(x-a)^n$? [There are six possibilities depending on the radius of convergence.]

2. Given a function f(x) that is infinitely differentiable at x=a, what is its Taylor series centered at a? [I.e., how do the coefficients depend on f?]

- 3. [Memorization] What are the Taylor series for the following functions (centered at zero)?
 - (a) $\sin x$
 - (b) $\cos x$
 - (c) e^x
 - (d) $\frac{1}{1-x}$
 - (e) $\ln(1+x)$

- 1. For this problem, let $f(x) = (1+x)^{1/3}$
 - (a) Find f'(x), f''(x), and f'''(x).
 - (b) What is the maximum M of |f'''(x)| on the interval [0,1]?
 - (c) What is $T_2(x)$, the second degree Taylor polynomial for f centered at x=0?
 - (d) Use $T_2(x)$ to estimate $\sqrt[3]{2}$.
 - (e) Bound the absolute value of the remainder $R_2(1) = f(1) T_2(1) = \sqrt[3]{2} T_2(1)$ using Taylor's inequality and the bound M on |f'''(x)| you found above.
- 2. (a) Find $\lim_{x\to 0} \frac{1-x^2-e^{-x^2}}{x^4}$ (using a power series representation for e^{-x^2}).
 - (b) Find

$$\int_0^1 \frac{1 - x^2 - e^{-x^2}}{x^4} dx$$

by integrating a power series term-by-term (your answer will be an infinite series).

3. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{(-2)^n n}{\sqrt{n^3+1}} (x-1)^n$