Determine whether the following series converge or diverge. If a series converges and the
terms are not eventually positive, determine whether or not the convergence is absolute.
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Converges by the ratio test.
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Converges (conditionally) by the alternating series test.
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Diverges by the integral test, comparing to f2
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Diverges by the divergence test, In <3 +1> — In(1/3).
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Converges (conditionally) by the alternating series test.
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Converges by the ratio test.
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Converges by the ratio test.
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Converges by the ratio test.
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Diverges by the divergence test (or ratio test).
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Converges (conditionally) by the alternating series test.
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Converges by direct or limit comparison to § >, #
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Diverges by the divergence test, m >1/3.
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Diverges by the divergence test (cos(1/n?) — 1).
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Converges by the integral test or the ratio test.



