1. Determine whether or not the following series converge. Explain your reasoning.

(a)
$$\sum_{n=1}^{\infty} ne^{-n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 - 1}{n^3 + 1}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2 + \sin n}$$

2. (a) Show that $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+1}$ converges conditionally.

(b) If $S = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sqrt{n}}{n+1}$ is the series above and $S_N = \sum_{n=1}^{N} (-1)^{n-1} \frac{\sqrt{n}}{n+1}$ is the Nth partial sum, find a value of N which guarantees that the absolute value of the remainder $R_N = S - S_N$ is less or equal 0.25.