MATH 2300-005 QUIZ 3 Name:

Due Tuesday, September 13th at the beginning of class. Please use additional paper as
necessary to submit CLEAR and COMPLETE solutions.
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1. We know that / — diverges but increasing the exponent of z in the denominator
1 e

by any amount produces a convergent improper integral. Show that the family of

functions {z(lnx)? : p > 0} is “between” x and the family {zP : p > 1} in the following

sense: I 2\
lim L nz)
T—00 x4

=0, foranyq>1,p>0.

(If you find this too confusing, you may do only the cases p =1,2,3.)

As an example, for p = 2 we have
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r—oco pd—1 = x%mm = xﬁmm:
In general, you can use L’Hopital’s rule n times, where n is smallest integer greater than
p:
(Inz)P pp—1)...(p—n+1)(Inx)P~"

achanolo a1 - zhﬁnolo (q — 1)”33‘1*1 =0,

since the exponent p — n of Inx is less than or equal to zero.

*© d
2. For which values of p does / _ e
e z(lnx)P

improper integral when it is convergent.

If p # 1 we have

converge/diverge? Find the value of the
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which is 1% if p>1and ccif p> 1. For p =1 we get tlim In(Int) = co and the integral
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diverges as well. In summary
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3. For what values of p does the improper integral / — converge?
0o X

For p # 1 we have
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which is ﬁ ifp<land coif p>1. For p=1 we get lim+ —Int = oo and the integral
t—0

/1da:_ © p>1
pr_ ﬁ p<l1
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. First, show that / % converges by comparison. Second, find the value of the
0 xr

diverges as well. In summary

improper integral (you should get %)

For instance, we can compare 7 +1z3 < x% on [1,00) so that

/°° dx /1 dx +/°° dx </1 dz +/°°das<
— = —— — — < 0.
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As for the actual value, we use partial fractions:
1 A Bzx+C
= 1 = (A+B)2?+(—A+B+C)z+(A+C), A =
1+a3 o+la?2—-az+1 (A+B)2"+(=A+B+C)a+(A+C),
Hence the improper integral is
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In the last line we are using the limit
t+1 . 1+1/t
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. Find the value of C for which the following improper integral converges and evaluate the

integral for this value of C:
o0 1 C
/ — dx.
0 2 +4 x+2

The integral is (with = 2 tan @ integrating the first summand)
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—00

1 V244t

— 1 22 _ — 1 yversTt
_tlggolnlz t24+4+4t/2|—Chn|t+2|+ Cln2 tllgloln 20 +2)0 +Cln2.

V2444t
2(t+2)¢
the logarithm will diverge. For C' = 1, the value of the integral is In 2.

Now we see that C' = 1 is the only possibility, else goes to 0 or co as t — oo and



