MATH 2300-005 QUIZ 15 $\,$

Name:

Due Friday, December 9th at the beginning of class.

1. The polar curves

$$r(\theta) = 1 + 2\sin(3\theta), \ r = 2,$$

are graphed below.

(a) Find the area inside the larger loops and outside the smaller loops of the graph of $r = 1 + 2\sin(3\theta)$.

Solution. Solving r = 0 gives

 $r = 1 + 2\sin(3\theta) = 0$, $\sin(3\theta) = -1/2$, $3\theta = -\pi/6, 7\pi/6 + 2\pi k, \ \theta = -\pi/18, 7\pi/18 + 2\pi k/3$.

One of the "big" loops is traced out by $-\pi/18 \le \theta \le 7\pi/18$, and one of the small loops is traced out by $7\pi/18 \le \theta \le 11\pi/18$. The corresponding areas are

$$\begin{aligned} A_{big} &= \frac{1}{2} \int_{-\pi/18}^{7\pi/18} (1+2\sin(3\theta))^2 d\theta = \frac{1}{2} \int_{-\pi/18}^{7\pi/18} (1+4\sin(3\theta)+4\sin^2(3\theta)) d\theta \\ &= \frac{1}{2} \int_{-\pi/18}^{7\pi/18} (1+4\sin(3\theta)+2(1-\cos(6\theta))) d\theta \\ &= \frac{1}{2} \left(3\theta - \frac{4}{3}\cos(3\theta) - \frac{1}{3}\sin(6\theta) \right) \Big|_{-\pi/18}^{7\pi/18} \\ &= \frac{\sqrt{3}}{2} + \frac{2\pi}{3} = 2.96042 \dots, \end{aligned}$$

$$\begin{aligned} A_{small} &= \frac{1}{2} \int_{7\pi/18}^{11\pi/18} (1+2\sin(3\theta))^2 d\theta = \frac{1}{2} \int_{7\pi/18}^{11\pi/18} (1+4\sin(3\theta)+4\sin^2(3\theta)) d\theta \\ &= \frac{1}{2} \int_{7\pi/18}^{11\pi/18} (1+4\sin(3\theta)+2(1-\cos(6\theta))) d\theta \\ &= \frac{1}{2} \left(3\theta - \frac{4}{3}\cos(3\theta) - \frac{1}{3}\sin(6\theta) \right) \Big|_{7\pi/18}^{11\pi/18} \\ &= \frac{\pi}{3} - \frac{\sqrt{3}}{2} = 0.18117\dots \end{aligned}$$

Hence the total area inside the big loops and outside the small loops is

$$3(A_{big} - A_{small}) = \pi + 3\sqrt{3} = 8.3377\dots$$

(b) Find the area outside the circle r = 2 but inside the curve $r = 1 + 2\sin(3\theta)$. Solution. We have

$$r = 2 = 1 + 2\sin(3\theta), \ \sin(3\theta) = 1/2, \ 3\theta = \pi/6, 5\pi/6 + 2\pi k, \ \theta = \pi/18, 5\pi/18 + 2\pi k/3.$$

One third of the area outside the circle and inside the other curve is given by

$$\begin{aligned} \frac{A}{3} &= \frac{1}{2} \int_{\pi/18}^{5\pi/18} [(1+2\sin(3\theta))^2 - 2^2] d\theta = \frac{1}{2} \int_{\pi/18}^{5\pi/18} (-3+4\sin(3\theta)+4\sin^2(3\theta)) d\theta \\ &= \int_{\pi/18}^{5\pi/18} (-3/2+2\sin(3\theta)+1-\cos(6\theta)) d\theta \\ &= \left(-\frac{\theta}{2} - \frac{2}{3}\cos(3\theta) - \frac{1}{6}\sin(6\theta)\right) \Big|_{\pi/18}^{5\pi/18} \\ &= \frac{5}{2\sqrt{3}} - \frac{\pi}{9} = 1.09430 \dots \end{aligned}$$

Hence the total area outside the circle but inside the other curve is

$$A = \frac{5\sqrt{3}}{2} - \frac{\pi}{3} = 3.28292\dots$$

(c) What is the tangent line to the curve $r = 1 + 2\sin(3\theta)$ at the point in the first quadrant where r is maximum?

Solution. The maximal value of $r = 1 + 2\sin(3\theta)$ is $r(\pi/6) = 3$, which happens at $(x, y) = (3\cos(\pi/6), 3\sin(\pi/6)) = (3\sqrt{3}/2, 3/2)$. Generally, we have

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{\frac{d}{d\theta}(r\sin\theta)}{\frac{d}{d\theta}(r\cos\theta)} = \frac{r\cos\theta + \sin\theta\frac{dr}{d\theta}}{-r\sin\theta + \cos\theta\frac{dr}{d\theta}}$$

which with $r = 1 + 2\sin(3\theta)$ gives

$$\frac{dy}{dx} = \frac{(1+2\sin(3\theta))\cos\theta + \sin\theta(6\cos(3\theta))}{-(1+2\sin(3\theta))\sin\theta + \cos\theta(6\cos(3\theta))}.$$

At $\theta = \pi/6$ we have

$$\left. \frac{dy}{dx} \right|_{\theta = \pi/6} = -\sqrt{3}.$$

Hence the tangent line is

$$y - 3/2 = -\sqrt{3}(x - 3\sqrt{3}/2).$$

(d) Write down a definite integral for the arclength of the curve $r(\theta) = 1 + 2\sin(3\theta)$ and use a computer to evaluate.

Solution. The arclength of a parametric curve (x(t), y(t)) for $a \le t \le b$ is given by

$$L = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt.$$

Taking $r = r(\theta)$, $(x(\theta), y(\theta)) = (r \cos \theta, r \sin \theta)$ (the curve is parameterized by θ), we get

$$L = \int_{a}^{b} \sqrt{r^{2} + \left(\frac{dr}{d\theta}\right)^{2}} d\theta.$$

In the case at hand, we have

$$L = \int_0^{2\pi} \sqrt{(1 + 2\sin(3\theta))^2 + (6\cos(3\theta))^2} d\theta = 27.2667...$$

2. Consider the parametric curve defined by

(a) Find the equations of the tangent lines to the curve at the point (-2, 0). Solution. The slope of the tangent line at the point (x(t), y(t)) is

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1-t^2}{-2t}.$$

The *t*-values corresponding the point (-2, 0) are $t = \pm \sqrt{3}$ and the corresponding slopes are

$$\frac{dy}{dx}\Big|_{t=\pm\sqrt{3}} = \frac{-2}{-2(\pm\sqrt{3})} = \pm\frac{1}{\sqrt{3}}$$

Hence the tangent lines are

$$y = \frac{x+2}{\sqrt{3}}$$
 $(t = \sqrt{3}), \ y = \frac{-(x+2)}{\sqrt{3}}$ $(t = -\sqrt{3}).$

(b) When/where does the curve have horizontal tangents? **Solution**. The slope dy/dx is zero when $dy/dt = 1 - t^2 = 0$, i.e. when $t = \pm 1$. This corresponds to $(x, y) = (0, \pm 2/3)$.

- (c) What is the length of the part of the curve forming the "loop"?
 - **Solution**. The *t*-values of the point of self-intersection (-2, 0) were found to be $t = \pm \sqrt{3}$ above. The arclength is

$$L = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{(-2t)^2 + (1-t^2)^2} dt = \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{4t^2 + 1 - 2t^2 + t^4} dt$$
$$= \int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{(1+t^2)^2} dt = \int_{-\sqrt{3}}^{\sqrt{3}} (1+t^2) dt = t + t^3/3 \Big|_{-\sqrt{3}}^{\sqrt{3}}$$
$$= 4\sqrt{3} = 6.9282 \dots$$

- 3. [§7.3 exercise 46.] The air in a room of volume 180 m³ initially contains 0.15% carbon dioxide by volume. Fresh air with a 0.05% concentration (by volume) of carbon dioxide is pumped into the room at a rate of 2 m³/min while well-mixed air is exhausted from the room at the same rate of 2 m³/min.
 - (a) Write an initial value problem (differential equation and initial condition) describing the rate of change (in m³/min) of the volume of carbon dioxide in the room. Then solve the IVP and use this to find the concentration (% by volume) of carbon dioxide in the room as a function of time.

Solution. Let A(t) denote the volume of CO₂ in the room (measured in m³) at time t in minutes. Then dA/dt is given by

$$\frac{dA}{dt} = \left(\frac{0.05}{100}\frac{\mathrm{m}^3}{\mathrm{m}^3}\right) \left(2\frac{\mathrm{m}^3}{\mathrm{min}}\right) - \left(\frac{A}{180}\frac{\mathrm{m}^3}{\mathrm{m}^3}\right) \left(2\frac{\mathrm{m}^3}{\mathrm{min}}\right) = \frac{1}{1000} - \frac{A}{90},$$
$$A(0) = \frac{0.15}{100}180 = \frac{27}{100}.$$

Separating variables and integrating gives

$$\int \frac{dA}{A - 9/100} = -\int \frac{dt}{90}$$
$$\ln|A - 9/100| = -\frac{t}{90} + C$$
$$A = \frac{9}{100} + Ce^{-t/90},$$

and the initial condition A(0) = 0.27 gives C = 9/50. If P(t) is the concentration (in % by volume), then P(t) = (A(t)/180)(100) = 5A(t)/9. Hence

$$P(t) = \frac{1}{20} + \frac{1}{10}e^{-t/90}.$$

- (b) What is the concentration of carbon dioxide in the room after half an hour? Solution. $P(30) = 1/20 + e^{-1/3}/10 = 0.1216...\%$.
- (c) How long does it take for the concentration of carbon dioxide to reach 0.1%? **Solution.** If $P(t) = 0.1 = \frac{1}{20} + \frac{1}{10}e^{-t/90}$, then

$$1/2 = e^{-t/90}, \ t = 90 \ln 2 = 62.38...$$
 minutes.

(d) What is the long-term concentration $(t \to \infty)$ of carbon dioxide in the room? Solution. We have

$$\lim_{t \to \infty} P(t) = 1/20 = 0.05\%$$

matching the intuition that we are exhausting the initial air and replacing it with fresh air that has a 0.05% concentration.