
MATH 2300-005 QUIZ 15 Name:
Due Friday, December 9th at the beginning of class.

1. The polar curves
r(θ) = 1 + 2 sin(3θ), r = 2,

are graphed below.
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(a) Find the area inside the larger loops and outside the smaller loops of the graph of
r = 1 + 2 sin(3θ).

Solution. Solving r = 0 gives

r = 1+2 sin(3θ) = 0, sin(3θ) = −1/2, 3θ = −π/6, 7π/6+2πk, θ = −π/18, 7π/18+2πk/3.

One of the “big” loops is traced out by −π/18 ≤ θ ≤ 7π/18, and one of the small
loops is traced out by 7π/18 ≤ θ ≤ 11π/18. The corresponding areas are
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Hence the total area inside the big loops and outside the small loops is
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(b) Find the area outside the circle r = 2 but inside the curve r = 1 + 2 sin(3θ).

Solution. We have

r = 2 = 1+2 sin(3θ), sin(3θ) = 1/2, 3θ = π/6, 5π/6+2πk, θ = π/18, 5π/18+2πk/3.

One third of the area outside the circle and inside the other curve is given by
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Hence the total area outside the circle but inside the other curve is
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(c) What is the tangent line to the curve r = 1 + 2 sin(3θ) at the point in the first
quadrant where r is maximum?

Solution. The maximal value of r = 1 + 2 sin(3θ) is r(π/6) = 3, which happens at
(x, y) = (3 cos(π/6), 3 sin(π/6)) = (3

√
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(d) Write down a definite integral for the arclength of the curve r(θ) = 1 + 2 sin(3θ)
and use a computer to evaluate.

Solution. The arclength of a parametric curve (x(t), y(t)) for a ≤ t ≤ b is given by
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Taking r = r(θ), (x(θ), y(θ)) = (r cos θ, r sin θ) (the curve is parameterized by θ),
we get
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In the case at hand, we have
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2. Consider the parametric curve defined by

x(t) = 1− t2, y(t) = t− t3/3.
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(a) Find the equations of the tangent lines to the curve at the point (−2, 0).

Solution. The slope of the tangent line at the point (x(t), y(t)) is
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(b) When/where does the curve have horizontal tangents?

Solution. The slope dy/dx is zero when dy/dt = 1− t2 = 0, i.e. when t = ±1.
This corresponds to (x, y) = (0,±2/3).



(c) What is the length of the part of the curve forming the “loop”?

Solution. The t-values of the point of self-intersection (−2, 0) were found to be
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3. [§7.3 exercise 46.] The air in a room of volume 180 m3 initially contains 0.15% carbon
dioxide by volume. Fresh air with a 0.05% concentration (by volume) of carbon dioxide
is pumped into the room at a rate of 2 m3/min while well-mixed air is exhausted from
the room at the same rate of 2 m3/min.

(a) Write an initial value problem (differential equation and initial condition)
describing the rate of change (in m3/min) of the volume of carbon dioxide in the
room. Then solve the IVP and use this to find the concentration (% by volume) of
carbon dioxide in the room as a function of time.

Solution. Let A(t) denote the volume of CO2 in the room (measured in m3) at
time t in minutes. Then dA/dt is given by
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Separating variables and integrating gives∫
dA

A− 9/100
= −

∫
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90
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90
+ C

A =
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and the initial condition A(0) = 0.27 gives C = 9/50. If P (t) is the concentration
(in % by volume), then P (t) = (A(t)/180)(100) = 5A(t)/9. Hence

P (t) =
1

20
+
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10
e−t/90.

(b) What is the concentration of carbon dioxide in the room after half an hour?

Solution. P (30) = 1/20 + e−1/3/10 = 0.1216 . . .%.

(c) How long does it take for the concentration of carbon dioxide to reach 0.1%?

Solution. If P (t) = 0.1 = 1
20 + 1

10e
−t/90, then

1/2 = e−t/90, t = 90 ln 2 = 62.38 . . . minutes.



(d) What is the long-term concentration (t→∞) of carbon dioxide in the room?

Solution. We have
lim
t→∞

P (t) = 1/20 = 0.05%

matching the intuition that we are exhausting the initial air and replacing it with
fresh air that has a 0.05% concentration.


