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1. Find a power series representation (centered at zero) for
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(re-indexing k = n− 1 in the last equality).

2. Solve the following initial value problems.

(a) y′ + y2 sinx = 0, y(0) = −1/2

Rearranging, we have
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If y(0) = −1/2 then C = 1 and the solution to the initial value problem is

y(x) =
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1 + cosx
.
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Separating variables gives
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Integrating, we obtain ∫
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If y(0) = −1, then we must have C = 1 and the negative square root,
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ln |1 + x3|+ 1

3. Suppose y(x) is the solution to the initial value problem

y′ = x2 − y2, y(0) = 1.

Use Euler’s method (step size 0.1) to approximate y(0.5).

The approximation is y(0.5) ≈ 0.674295419. The relevant data are in the table below,
where yn+1 = yn + (0.1)(x2n − y2n):

n xn yn x2n − y2n
0 0 1 −1

1 0.1 0.9 −0.8

2 0.2 0.82 −0.6324

3 0.3 0.75676 −0.482685698

4 0.4 0.70849143 −0.34196106

5 0.5 0.674295419

4. Use the third degree Taylor polynomial (centered at zero) for f(x) = ln(1 + x) to
estimate ln(2) and use Taylor’s inequality to give bounds on the error.

The first four derivatives of f(x) = ln(1 + x) are
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The third degree Taylor polynomial centered at zero is
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To use T3(x) to approximate ln(2) we take x = 1, ln(2) ≈ T3(1) = 1− 1/2 + 1/3 = 5/6.
A bound for the absolute value of the fourth derivative f (4)(x) on the interval [0, 1] is
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and Taylor’s inequality states that
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Hence
7/12 = 5/6− 1/4 ≤ ln(2) ≤ 5/6 + 1/4 = 13/12.


