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1. Find a power series representation (centered at zero) for

1 _d< 1 )
C+a?  dy\T—y), .

We have
1 d< 1> d(“n> >
(I-y)? dy\l-y) dy\‘z —
so that
1 1 o0 [0.9]
3yn—1 k. 3k
32 T (1 — (13 222”(_$) :Z(k’+1)(—1)1‘ ;
(+a?  (1- ()P 2
(re-indexing k = n — 1 in the last equality).
2. Solve the following initial value problems.
(a) ¥ +y?sinz =0, y(0) = —1/2
Rearranging, we have
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If y(0) = —1/2 then C' = 1 and the solution to the initial value problem is
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Separating variables gives
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If y(0) = —1, then we must have C' = 1 and the negative square root,
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y(x) = —\/31n]1+x3\ +1
3. Suppose y(z) is the solution to the initial value problem
y =2 —y% y(0)=1.

Use Euler’s method (step size 0.1) to approximate y(0.5).

The approximation is y(0.5) ~ 0.674295419. The relevant data are in the table below,
where Yn+1l = Yn + (01)(1’% - yr%)

B Yn T — Un
0] 0 1 1
1]0.1 0.9 0.8
202 0.82 ~0.6324
3103] 075676 | —0.482685698
404 0.70849143 | —0.34196106
51 0.5 | 0.674205419

4. Use the third degree Taylor polynomial (centered at zero) for f(z) = In(1+ z) to
estimate In(2) and use Taylor’s inequality to give bounds on the error.

The first four derivatives of f(x) = In(1 + x) are
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The third degree Taylor polynomial centered at zero is
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To use T3(z) to approximate In(2) we take x =1, In(2) ~ T3(1) =1—-1/2+1/3 = 5/6.
A bound for the absolute value of the fourth derivative f*)(z) on the interval [0,1] is
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and Taylor’s inequality states that
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Hence
7/12=5/6 —1/4 <In(2) <5/6 +1/4 = 13/12.



