MATH 2300-005 QUIZ 10 Name:
This quiz is due Tuesday, November 1st at the beginning of class. Use additional paper as
necessary to submit CLEAR and COMPLETE solutions.
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1. Find hn% ———— (using a power series representation for e™*"). [You may assume
T—> x
e” is equal to its Taylor series.]
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2. Find

by integrating a power series term-by-term.

From the previous problem we have
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(the n = 0,1 terms canceled and we divided by x*). Integrating term-by-term gives
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3. Use the alternating series remainder estimate to to give an approximation to the above
integral so that the error is less than 0.001.
1)n+1
The series Z ————— is alternating with the absolute value of the terms decreasing
n!(2n — 3)

to zero. The absolute value of the nth remainder is bounded by the absolute value of the

(n + 1)st term
1
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The first value of n such that the above is less or equal 1/1000 is n = 5 with
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Hence the approximation to the integral is

|Rn| <

5 n+1 —569
—0.4515873.
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whereas the value of the series is —0.4517253. .., good to the third decimal place.
4. Find the Taylor series centered at zero for the function f(z) = (1 — 22)~'/2. [You may
assume the results of the text on the binomial series, cf. §8.7, pg. 611-612).

The Taylor series for g(z) = (14 )~ /2 is given by (and is equal to within the radius of

convergence R = 1)
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Evaluating at —? gives
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5. Integrate the power series from the previous problem term-by-term to find a power
series representation for arcsin x around x = 0.

We know that arcsinx = Integrating the power series from the previous

=

problem term-by-term gives
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The constant of integration is seen to be C' = 0 by evalutating the series and arcsinx at

x = 0. This power series representation of arcsin « is valid within the radius of
convergence, i.e. on (—1,1).




6. (Optional “fun” problem) Suppose

[e.o]

flz) = b cha:".

1—x— 22
n=0

Multiply both sides by 1 — 2 — 22 and equate powers of x to show that ¢, = F},, the nth

Fibonacci number (Fy =1, F; =1, F, = F,,_1 + F,,_2). Use partial fractions to write
A B
€Tr) = + =
f(x) 1o 719
where ¢ = 1+2\/57 o= 1*2\/5. Write f(x) as a power series using the geometric series and

the partial fraction decomposition. Finally, give a closed-form expression for the Fj,.
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[You should get something equivalent to F,, = 75 \gntl — o1 ) = 7 ]

If
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1= (1-z—2?) chm” = Z cn(a" =z g2 = co+(cl—co)x+2(cn—cn_1—cn_g)a:"
_ — n=2

Equating powers of x on both sides gives
co=1,cg—c1 =0, ¢, —cp_1—ch2=0, n > 2.

Hence cg = c¢; =1 and ¢, = ¢,—1 + ¢p—2, giving ¢, = F,, the nth Fibonacci number.

2:

We have the factorization 1 — z — 2% = —(z — ¢)(x — ¢) using the quadratic equation.

Partial fractions gives
1 A B - 1
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Using the geometric series twice we have
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Equating the two series we’ve obtained for

15— gives
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