
MATH 2300-005 QUIZ 10 Name:
This quiz is due Tuesday, November 1st at the beginning of class. Use additional paper as
necessary to submit CLEAR and COMPLETE solutions.

1. Find lim
x→0

1− x2 − e−x2

x4
(using a power series representation for e−x

2
). [You may assume

ex is equal to its Taylor series.]

Since ex =

∞∑
n=0

xn

n!
for all x ∈ R, we have

e−x
2

=
∞∑
n=0

(−x2)n

n!
=
∞∑
n=0

(−1)nx2n

n!
= 1− x2

1
+
x4

2
− x6

6
+ . . .

so that
1− x2 − e−x2

x4
=

1

x4

(
−x

4

2
+
x6

6
− . . .

)
= −1

2
+
x2

6
+ · · · → −1

2

as n→∞.

2. Find ∫ 1

0

1− x2 − e−x2

x4
dx

by integrating a power series term-by-term.

From the previous problem we have

1− x2 − e−x2

x4
=
∞∑
n=2

(−1)n+1x
2n−4

n!

(the n = 0, 1 terms canceled and we divided by x4). Integrating term-by-term gives∫ 1

0

1− x2 − e−x2

x4
dx =

∫ 1

0

( ∞∑
n=2

(−1)n+1x
2n−4

n!

)
dx =

∞∑
n=2

(−1)n+1

n!

∫ 1

0
x2n−4dx

=

∞∑
n=2

(−1)n+1

n!

x2n−3

2n− 3

∣∣∣1
0

=

∞∑
n=2

(−1)n+1

n!

1

2n− 3
.



3. Use the alternating series remainder estimate to to give an approximation to the above
integral so that the error is less than 0.001.

The series

∞∑
n=2

(−1)n+1

n!(2n− 3)
is alternating with the absolute value of the terms decreasing

to zero. The absolute value of the nth remainder is bounded by the absolute value of the
(n+ 1)st term

|Rn| ≤
1

(n+ 1)!(2(n+ 1)− 3)
.

The first value of n such that the above is less or equal 1/1000 is n = 5 with

1

(5 + 1)!(2(5)− 1)
=

1

6480
<

1

1000
.

Hence the approximation to the integral is

5∑
n=2

(−1)n+1

n!(2n− 3)
=
−569

1260
= −0.4515873 . . .

whereas the value of the series is −0.4517253 . . . , good to the third decimal place.

4. Find the Taylor series centered at zero for the function f(x) = (1− x2)−1/2. [You may
assume the results of the text on the binomial series, cf. §8.7, pg. 611–612).

The Taylor series for g(x) = (1 + x)−1/2 is given by (and is equal to within the radius of
convergence R = 1)

(1 + x)−1/2 =

∞∑
n=0

(
−1/2

n

)
xn

where (
−1/2

n

)
=

(−1/2)(−3/2)(−5/2) · · · · · (−1/2− n+ 1)

n!
,

(
−1/2

0

)
= 1.

Evaluating at −x2 gives

(1− x2)−1/2 = g(−x2) =

∞∑
n=0

(
−1/2

n

)
x2n(−1)n.

5. Integrate the power series from the previous problem term-by-term to find a power
series representation for arcsinx around x = 0.

We know that arcsinx =

∫
dx√

1− x2
. Integrating the power series from the previous

problem term-by-term gives

arcsinx =

∫
dx√

1− x2
=

∫ ( ∞∑
n=0

(
−1/2

n

)
x2n(−1)n

)
dx =

∞∑
n=0

(
−1/2

n

)
(−1)n

∫
x2ndx

=
∞∑
n=0

(
−1/2

n

)
(−1)n

x2n+1

2n+ 1
+ C

The constant of integration is seen to be C = 0 by evalutating the series and arcsinx at
x = 0. This power series representation of arcsinx is valid within the radius of
convergence, i.e. on (−1, 1).



6. (Optional “fun” problem) Suppose

f(x) =
1

1− x− x2
=

∞∑
n=0

cnx
n.

Multiply both sides by 1− x− x2 and equate powers of x to show that cn = Fn, the nth
Fibonacci number (F0 = 1, F1 = 1, Fn = Fn−1 + Fn−2). Use partial fractions to write

f(x) =
A

x+ φ
+

B

x+ φ̄

where φ = 1+
√
5

2 , φ̄ = 1−
√
5

2 . Write f(x) as a power series using the geometric series and
the partial fraction decomposition. Finally, give a closed-form expression for the Fn.

[You should get something equivalent to Fn =
(−1)n√

5

(
1

φn+1
− 1

φ̄n+1

)
=
φn+1 − φ̄n+1

√
5

.]

If
1

1− x− x2
=
∞∑
n=0

cnx
n

then

1 = (1−x−x2)
∞∑
n=0

cnx
n =

∞∑
n=0

cn(xn−xn+1−xn+2) = c0+(c1−c0)x+

∞∑
n=2

(cn−cn−1−cn−2)xn.

Equating powers of x on both sides gives

c0 = 1, c0 − c1 = 0, cn − cn−1 − cn−2 = 0, n ≥ 2.

Hence c0 = c1 = 1 and cn = cn−1 + cn−2, giving cn = Fn, the nth Fibonacci number.

We have the factorization 1− x− x2 = −(x− φ)(x− φ̄) using the quadratic equation.
Partial fractions gives

1

1− x− x2
=

A

x+ φ
+

B

x+ φ̄
, −1 = (A+B)x+Aφ̄+Bφ, A = −B =

1

φ− φ̄
=

1√
5
.

Using the geometric series twice we have

1

1− x− x2
=

1

φ
√

5

(
1

1 + x/φ

)
− 1

φ̄
√

5

(
1

1 + x/φ̄

)
=

1

φ
√

5

∞∑
n=0

(−1)n(x/φ)n − 1

φ̄
√

5

∞∑
n=0

(−1)n(x/φ̄)n

=
1√
5

∞∑
n=0

xn
(

1

φn+1
− 1

φ̄n+1

)
(−1)n.

Equating the two series we’ve obtained for 1
1−x−x2 gives

Fn =
(−1)n√

5

(
1

φn+1
− 1

φ̄n+1

)
=
φn+1 − φ̄n+1

√
5

.


