This is a take-home quiz, due Monday, February 16th at the beginning of class. Please use this as a cover page for your work.

- 1. Using the definition of the derivative as limit of difference quotients, find the derivatives of the following. Clearly show all of your work.
 - (a) $y = x^4$ (use binomial theorem, $(x + h)^4 = ?$)

To simplify the numerator below, we note that

$$(x+h)^4 = x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4$$

by the binomial theorem (fourth row of Pascal's triangle).

We have

$$y' = \lim_{h \to 0} \frac{(x+h)^4 - x^4}{h} = \lim_{h \to 0} \frac{x^4 + 4x^3h + 6x^2h^2 + 4xh^3 + h^4 - x^4}{h}$$
$$= \lim_{h \to 0} \frac{h(4x^3 + 6x^2h + 4xh^2 + h^3)}{h} = \lim_{h \to 0} 4x^3 + 6x^2h + 4xh^2 + h^3$$
$$= 4x^3.$$

(b) $y = x^{1/3}$ (use difference of cubes, $((x+h)^{1/3})^3 - (x^{1/3})^3 = ?$)

To simplify the numerateor below, we use the "difference of cubes" factorization

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

with $a = (x+h)^{1/3}, b = x^{1/3}$.

We have

$$y' = \lim_{h \to 0} \frac{(x+h)^{1/3} - x^{1/3}}{h} = \lim_{h \to 0} \frac{((x+h)^{1/3} - x^{1/3})((x+h)^{2/3} + (x+h)^{1/3}x^{1/3} + x^{2/3})}{h((x+h)^{2/3} + (x+h)^{1/3}x^{1/3} + x^{2/3})}$$

$$= \lim_{h \to 0} \frac{(x+h) - x}{h((x+h)^{2/3} + (x+h)^{1/3}x^{1/3} + x^{2/3})} = \lim_{h \to 0} \frac{1}{(x+h)^{2/3} + (x+h)^{1/3}x^{1/3} + x^{2/3}}$$

$$= \frac{1}{(x+0)^{2/3} + (x+0)^{1/3}x^{1/3} + x^{2/3}} = \frac{1}{3x^{2/3}} = \frac{1}{3}x^{-2/3}.$$

2. Find the equations of the tangent lines to the graph of $y = x^2$ that also go through the point (0, -4). (Draw a picture; there are two such lines.)

The slope of the line going through (x, x^2) and (0, -4) is

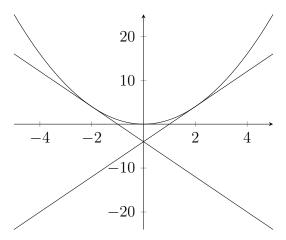
$$m = \frac{x^2 - (-4)}{x - 0} = x + \frac{4}{x}.$$

This should be the derivative of $y = x^2$ at x. So we have

$$y'(x) = 2x = x + \frac{4}{x} \Leftrightarrow x^2 - 4 = 0 \Leftrightarrow x = \pm 2, m = \pm 4.$$

The equations for these lines are

$$y - 4 = \pm 4(x - \pm 2)$$
 or $y = \pm 4x - 4$.



- 3. Let $f(x) = x^4 18x^2 + 77$. Find exact values in your answers to the folloing questions, i.e. don't use decimal approximations.
 - (a) For what values of x is f(x)=0? (If $y=x^2$ then $f(y)=y^2-18y+77$. Use the quadratic formula to find y. You should get four values for x). If $y^2-18y+77=0$, then $y=\frac{18\pm\sqrt{18^2-4\cdot77}}{2}=11,7$, and if $y=x^2$ then $x=\pm\sqrt{11}\approx\pm3.317,\pm\sqrt{7}\approx\pm2.646$.
 - (b) Find f'(x) and the values of x for which f'(x) = 0 $f'(x) = 4x^3 - 36x = 4x(x-3)(x+3) = 0$ when $x = 0, \pm 3$.
 - (c) On what intervals is f increasing? Decreasing? f' is positive (and f is increasing) on $(-3,0) \cup (3,\infty)$. f' is negative (and f is decreasing) on $(-\infty, -3) \cup (0, 3)$.
 - (d) Find the points on the graph of f where f has a local maximum or local minimum. There is a local maximum of f(0) = 77 when x = 0 and local minima of $f(\pm 3) = -4$ at $x = \pm 3$.
 - (e) Find f''(x) and the values of x for which f''(x) = 0. $f''(x) = 12x^2 - 36 = 12(x - \sqrt{3})(x + \sqrt{3}) = 0$ when $x = \pm \sqrt{3}$.
 - (f) On what intervals is the graph of f concave up? Concave down? f''>0 (and the graph of f is concave up) on $(-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)$. f''<0 (and the graph of f is concave down) on $(-\sqrt{3}, \sqrt{3})$.
 - (g) Find the coordinates of any inflection points. The inflection points are $(\pm\sqrt{3},32)$
 - (h) Use the above information to sketch a graph of f.

