
Math 1300-018 Quiz 6 Name:
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2. Find the equation of the tangent line to the curve

ey cosx = sin(xy)− e

through the point (π, 1).

Differentiating with respect to x (with y = y(x) a function of x), we get

−ey sinx+ y′ey cosx = cos(xy)(xy′ + y).

Evaluating at (x, y) = (π, 1) gives

−ey′ = −(πy′ + 1)

so that y′ = 1
e−π when (x, y) = (π, e). Or you could solve for y′, then evaluate at

(π, 1):

y′ =
y cos(xy) + ey sinx
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, y′
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The equation of the tangent line is therefore

y − 1 =
1

e− π
(x− π).



3. Consider the function
f(x) = 4x3 + 2x− 1.

(a) Show that f is invertible.

The function is invertible because it is always increasing, f ′(x) = 12x2+2 > 0.

(b) Find
(
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)′
(−1).
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. So we have to find x0 = f−1(−1) and

f(x0) to evaluate (f−1)′(−1). By inspection, f(0) = −1 so that f−1(−1) = 0.
Next, f ′(0) = 2. Hence
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